Acrylonitrile–butadiene–styrene (ABS) is commonly used material in the fused deposition modeling (FDM) process. In this work, ABS and ABS plus parts were built with different building parameters and they were tested according to the ASTM D695 standard. Compression strength results were compared to stock ABS material values. The fracture surfaces of selected specimens were examined under a Scanning Electron Microscope (SEM), to determine the failure mode of the filament strands. Following this a Steward Platform part was tested under compression in a tensile testing machine. The experimental results were employed to develop a finite element model of the Steward Platform part, in order to determine the maximum force the part can withstand. The Finite Element Model results were in good agreement with the values measured in the Steward Platform part compressive tests, demonstrating that the model developed is reliable. In these experiments, it was found that ABS parts build with a larger layer thickness showed lower compressive strength, which ABS plus did not show. ABS specimens on average developed about half the compressive strength of the ABS plus specimens, while the ABS plus specimens showed lower compressive strength values than stock ABS material.
Highlights ABS and ABS plus specimens were tested according to the ASTM D695 standard. A finite element model (FEM) of a Steward Platform part was developed and studied. The FEM results were experimentally verified. The FEM results were in agreement with the part compressive tests results. The model developed based on the compression experiments is reliable.
Acrylonitrile–butadiene–styrene (ABS) is a popular engineering thermoplastic and it is the most common material used in fused deposition modeling (FDM) technology. This technology is nowadays used for the production of prototypes and functional parts as well. It is therefore critical to know the mechanical properties of these parts, which, is as expected different from their nominal values.
In this work the tensile strength of parts build with the FDM process is measured. ABS and ABS plus parts were built with different building parameters and were tested according to the ASTM D638-02a standard on a Schenk Trebel Co. tensile test machine. It was found that the building direction does not significantly influence the tensile strength of the parts, although the parts were anisotropic, as expected. Parts build with larger layer thickness showed lower tensile strength. The average deviation between nominal and experimental tensile strength was about 15% for the ABS and about 42% for the ABS plus material. The ABS plus showed on average 9% higher strength than ABS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.