These studies were performed to test the benefit of resistant starch on ulcerative colitis via prebiotic and butyrate effects. Butyrate, propionate, and acetate are produced in the colon of mammals as a result of microbial fermentation of resistant starch and other dietary fibers. Butyrate plays an important role in the colonic mucosal growth and epithelial proliferation. A reduction in the colonic butyrate level induces chronic mucosal atrophy. Short-chain fatty acid enemas increase mucosal generation, crypt length, and DNA content of the colonocytes. They also ameliorate symptoms of ulcerative colitis in human patients and rats injected with trinitrobenzene sulfonic acid (TNBS). Butyrate, and also to a lesser degree propionate, are substrates for the aerobic energy metabolism, and trophic factors of the colonocytes. Adverse butyrate effects occur in normal and neoplastic colonic cells. In normal cells, butyrate induces proliferation at the crypt base, while inhibiting proliferation at the crypt surface. In neoplastic cells, butyrate inhibits DNA synthesis and arrests cell growth in the G1 phase of the cell cycle. The improvement of the TNBS-induced colonic inflammation occurred earlier in the resistant starch (RS)-fed rats than in the RS-free group. This benefit coincided with activation of colonic epithelial cell proliferation and the subsequent restoration of apoptosis. The noncollagenous basement membrane protein laminin was regenerated initially in the RS-fed group, demonstrating what could be a considered lower damage to the intestinal barrier function. The calculation of intestinal short-chain fatty acid absorption confirmed this conclusion. The uptake of short-chain fatty acids in the colon is strongly inhibited in the RS-free group, but only slightly reduced in the animals fed with RS. Additionally, RS enhanced the growth of intestinal bacteria assumed to promote health. Further studies involving patients suffering from ulcerative colitis are necessary to determine the importance of RS in the therapy of a number of intestinal diseases and the maintenance of health.
The gastrointestinal glutathione peroxidase (GI-GPx) is believed to prevent absorption of hydroperoxides. GI-GPx is expressed in the intestine together with the other three glutathione peroxidase isoenzymes, raising the question of the physiological role of the different GPx types. We therefore studied the cellular and subcellular distribution of GI-GPx in normal and malignant tissue obtained from patients with colorectal cancer or familial polyposis by immunohistochemistry. In healthy ileum epithelium GI-GPx was preferentially enriched in Paneth cells. In unaffected crypts of colon and rectum, it decreased gradually from the ground to the luminal surface. In crypt ground, GI-GPx was uniformly distributed, whereas in cells at the luminal surface it was concentrated in structures capping the nuclei at the apical pole. In colorectal cancer, GI-GPx expression depended on the stage of malignant transformation. In early stages, GI-GPx was increased and pronouncedly associated with the vesicular structures. In progressed stages of malignancy, structures disintegrated and GI-GPx distribution became more diffuse. These observations support the hypothesis that GI-GPx, apart from being a barrier against hydroperoxide absorption, might be involved in cell growth and differentiation.
Imbalances in epithelium-matrix interactions have been discussed as a pathomechanism in ulcerative colitis, causing a colonic mucosal barrier dysfunction. Laminin, the major noncollagenous component of the basement membrane, plays a role in epithelial basal lamina formation and promotes differentiation of human enterocytes. We therefore investigated the distribution of laminin in ulcerative colitis affected colonic tissues. Tissue specimens from both affected and nonaffected colonic regions were obtained from ten patients with ulcerative colitis during colonoscopies or operations. Healthy tissue from five patients with colorectal cancer was used as control. After histological classification, the localization and distribution of the basement membrane associated extracellular matrix proteins were determined by immunohistochemistry. Paraffin-embedded sections were incubated with antibodies against laminin and type IV and V collagen. No positive immunoreactivity against laminin was found in most of the epithelial basement membranes surrounding the crypts in affected colonic tissues, without involvement of the subendothelial structures. In contrast, a type IV and V collagen accumulation occurred in all these tissue samples. The lack of laminin in combination with an overexpression of type IV and V collagen, as reported for the first time in this paper, leads to changes in basement membrane structure. These findings indicate that the three-dimensional network of the colonic epithelial basement membrane and its function are seriously disturbed in exacerbating ulcerative colitis. This provides new insights into the importance of cell-matrix interactions for physiological and pathological mechanisms in the etiology of ulcerative colitis.
Gastro intestinal glutathione peroxidase (GI-GPx) is one of the four distinct mammalian selenoperoxidases. It had been reported to be restricted to the gastrointestinal tract but has more recently been identified also in human liver and some tumor cell lines. GI-GPx ranks high in the hierarchy of selenoproteins. The GI-GPx mRNA rather increases than decreases in selenium deficiency. GI-GPx protein responds poorly to selenium deprivation and increases fast upon resupplementation. Putative biological roles of GI-GPx, e.g. protection against food-born hydroperoxides, redox-regulation of proliferation or apoptosis, and modulation of mucosal immunity, are discussed in the light of cellular and subcellular distribution, transcriptional regulation and observations with k.o. mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.