Baculoviruses were isolated from three major lepidopteran pests, Helicoverpa armigera, Spodoptera litura and Amsacta albistriga in the semi-arid tropics during natural epizootic conditions at ICRISAT fields, Patancheru, Andhra Pradesh, India. Biological, morphological and biochemical analysis identified these isolates as Nucleopolyhedroviruses (NPVs). Scanning electron microscopy of the occlusion bodies (OBs) purified from diseased larvae revealed polyhedral particles of size approximately 0.5-2.5 μm [Helicoverpa armigera Nucleopolyhedrovirus (HearNPV)], 0.9-2.92 μm [Spodoptera litura Nucleopolyhedrovirus (SpltNPV)] and 1.0-2.0 μm [Amsacta albistriga Nucleopolyhedrovirus (AmalNPV)] in diameter. Transmission electron microscopy of thin sections of OBs of the three isolates revealed up to 5-8 multiple bacilliform shaped particles packaged within a single viral envelope. The dimensions of these particles were 277.7 × 41.6 nm for HearNPV, 285.7 × 34.2 nm for SpltNPV and 228.5 × 22.8 nm for AmalNPV. Each of HearNPV and AmalNPV contained up to 6 nucleocapsids and SpltNPV contained up to 7 nucleocapsids per envelope. The estimated molecular weights of the purified OB (polyhedrin) protein of the three NPVs were 31.29-31.67 kDa. Virus yield (OBs/larva) was 5.18 ± 0.45 × 10(9) for HearNPV, 5.73 ± 0.17 × 10(9) for SpltNPV and 7.90 ± 0.54 × 10(9) for AmalNPV. The LC50 values of various NPVs against 2nd and 3rd instar larvae indicated 2.30 × 10(4) and 1.5 × 10(5) OBs/ml for HearNPV, 3.5 × 10(4) and 2.4 × 10(5) OBs/ml for SpltNPV and 5.6 × 10(4) and 3.96 × 10(5) OBs/ml for AmalNPV. The lethal time required to cause 50% mortality (LT50) for these three species were also defined. This study has shown that the NPVs infecting three major lepidopteran pests in India are multiple NPVs, and they have good potential to use as biocontrol agents against these important pests.
Staphylococcus aureus, a natural
inhabitant of nasopharyngeal tract, survives mainly as biofilms. Previously we have observed that S. aureus ATCC 12600 grown under anaerobic conditions exhibited high rate of biofilm formation and l-lactate dehydrogenase activity. Thus, the concentration of pyruvate plays a critical role in S. aureus, which is primarily catalyzed by pyruvate kinase (PK). Analyses of the PK gene sequence (JN645815) revealed presence of PknB site in PK gene indicating that phosphorylation may be influencing the functioning of PK. To establish this hypothesis the pure enzymes of S. aureus ATCC 12600 were obtained by expressing these genes in PK 1 and PV 1 (JN695616) clones and passing the cytosolic fractions through nickel metal chelate column. The molecular weights of pure recombinant PK and PknB are 63 and 73 kDa, respectively. The enzyme kinetics of pure PK showed KM of 0.69 ± 0.02 µM, while the KM of PknB for stpks (stpks = NLCNIPCSALLSSDITASVNCAK) substrate was 0.720 ± 0.08 mM and 0.380 ± 0.07 mM for autophosphorylation. The phosphorylated PK exhibited 40 % reduced activity (PK = 0.2 ± 0.015 μM NADH/min/ml to P-PK = 0.12 ± 0.01 μM NADH/min/ml). Elevated synthesis of pyruvate kinase was observed in S. aureus ATCC 12600 grown in anaerobic conditions suggesting that the formed pyruvate is more utilized in the synthesis phase, supporting increased rate of biofilm formation.Electronic supplementary materialThe online version of this article (doi:10.1007/s13205-014-0248-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.