The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine.
Cyclic nucleotides are well-known second messengers involved in the regulation of
important metabolic pathways or virulence factors. There are six different classes
of nucleotide cyclases that can accomplish the task of generating cAMP, and four
of these are restricted to the prokaryotes. The role of cAMP has been implicated in
the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains
important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis
and Corynebacterium, and industrial organisms from the genus Streptomyces.
We have analysed the actinobacterial genome sequences found in current databases
for the presence of different classes of nucleotide cyclases, and find that only class
III cyclases are present in these organisms. Importantly, prominent members such as
M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded
in their genomes, some of which display interesting domain fusions seen for the
first time. In addition, a pseudogene corresponding to a cyclase from M. avium has
been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The
Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase
each, both of which have corresponding orthologues in M. tuberculosis. A clustering
of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like,
fungi-like and other bacteria-like class III cyclase sequences within this phylum,
suggesting that these proteins may have significant roles to play in this important
group of organisms.
In this paper, a new five-level inverter topology for open-end winding induction-motor (IM) drive is proposed. The open-end winding IM is fed from one end with a two-level inverter in series with a capacitor-fed H-bridge cell, while the other end is connected to a conventional two-level inverter. The combined inverter system produces voltage space-vector locations identical to that of a conventional five-level inverter. A total of 2744 spacevector combinations are distributed over 61 space-vector locations in the proposed scheme. With such a high number of switching state redundancies, it is possible to balance the H-bridge capacitor voltages under all operating conditions including overmodulation region. In addition to that, the proposed topology eliminates 18 clamping diodes having different voltage ratings compared with the neutral point clamped inverter. On the other hand, it requires only one capacitor bank per phase, whereas the flying-capacitor scheme for a five-level topology requires more than one capacitor bank per phase. The proposed inverter topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell. This will increase the reliability of the system. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive. Index Terms-H-bridge, multilevel inverter, open-end winding induction motor (IM) drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.