Flutamide (FLT) is an antiandrogen drug for the treatment of prostate cancer. It has the drawback of poor water solubility and needs enhancement of its dissolution rate in simulated gastric fluids. Hence, it is prepared as self-nanoemulsifying drug delivery systems (SNEDDS) with an aim to enhance its dissolution rate. The objectives of the study are to develop SNEDDS of FLT and to characterize for particle size, self-nanoemulsification, and dissolution enhancement. Solubility of FLT was determined in various oils, surfactants, and cosurfactants. Sesame oil was selected as an oil phase, Tween 20 as surfactant, and PEG400 as cosurfactant due to their higher solubilization effect. Various formulations were prepared by simple mixing followed by vortexing. From studies, the optimized SNEDDS formulation was composed of FLT (8.04% w/w), sesame oil (24.12% w/w), Tween 20 (53.38% w/w), and PEG400 (14.46% w/w). The selected SNEDDS could be self-emulsified without precipitation upon simple mixing. The mean particle size of the SNEDDS was 148.7 nm and percent drug content was 99.66. The dissolution rate of FLT from SNEDDS was faster and higher in three different dissolution media such as 2% sodium lauryl sulfate (97.85%), simulated gastric fluid (0.1 N HCl containing 0.5% Tween 20) (95.71%), and simulated intestinal fluid (pH 6.8 buffer) (96.21%).
Entropy generation is inherently affiliated with transport of thermal energy. However, not much attention has been paid to the study of entropy generation in liquid thin film flows. Hence, in this paper an analysis is carried out to study the entropy generation in a thin viscous fluid film on a stretching sheet embedded in a porous medium subject to a magnetic field and thermocapillarity force taking thermal radiation and internal heating/absorption into account. The numerical solution of the equations of momentum and energy governing the flow is obtained. Influence of various parameters emerged in the analysis on the velocity, temperature, surface drag, Nusselt number, entropy generation number and the Bejan number are graphically illustrated and discussed. Thermocapillarity number shows an enhancement of velocity at the free surface. Film thickness is found to increase with increasing thermocapillary force. Thinner films are noticed for stronger magnetic field strengths. It is found that in the absence of thermocapillary force, the effect of magnetic field on entropy generation number near the stretching surface is prominent. Thermocapillarity is seen to have a stronger effect on the entropy generation number near the stretching surface as well as at the free surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.