Dynamics of blood containing gold nanoparticles on a syringe and other objects with a nonuniform thickness is of importance to experts in the industry. This study presents the significance of partial slip (i.e. combination of linear stretching and velocity gradient) and buoyancy on the boundary layer flow of blood-gold Carreau nanofluid over an upper horizontal surface of a paraboloid of revolution (uhspr). In this report, the viscosity of the Carreau fluid corresponding to an infinite shear-rate is assumed as zero, meanwhile, the viscosity corresponding to zero shear-rate, density, thermal conductivity, and heat capacity were assumed to vary with the volume fraction of nanoparticles. The governing equation that models the transport phenomenon were non-dimensionalized and parameterized using suitable similarity variables and solved numerically using classical Runge-Kutta method with shooting techniques and MATLAB bvp4c package for validation. The results show that temperature distribution across the flow decreases more significantly with buoyancy-related parameter when the influence of partial slip was maximized. Maximum velocity of the flow is ascertained at larger values of partial slip and buoyancy parameters. At smaller values of Deborah number and large values of volume fraction, 806
The combined effect of yield stress and irreversible boundary reaction on dispersion process in a Casson fluid flowing in a conduit (pipe/channel) is studied using the generalized dispersion model proposed by Sankarasubramanian and Gill (Sankarasubramanian, R., and W. N. Gill. Proc. R. Soc. London, Ser. A 333:115-132, 1973). The study describes the development of dispersive transport following the injection of a tracer in terms of the three effective transport coefficients, viz., exchange, convection, and dispersion coefficients. The exchange coefficient does not depend on yield stress but the convection and dispersion coefficients depend on yield stress or equivalently plug flow region. For large times, when the plug flow radius is one-tenth of pipe radius, the convective coefficient is reduced by 0.41 times of the corresponding value for a Newtonian fluid at equivalent wall absorption parameter; in channel case the reduction is by 39%. It is seen that the asymptotic dispersion coefficient decreases with increase in wall absorption parameter and yield stress of the fluid. When the plug radius in pipe (channel) is 0.1, depending upon the values of wall absorption parameter, say (0.01-100) the reduction factor in dispersion coefficient is in the range (0.1-0.3) in comparison to the values of the Newtonian case. The results reduce to those of Sankarasubramanian and Gill (Sankarasubramanian, R., and W. N. Gill. Proc. R. Soc. London, Ser. A 333:115-132, 1973) when there is no yield stress for the pipe flow analysis and to those of Dash et al. (Dash, R. K., G. Jayaraman, and K. N. Mehta. Ann. Biomed. Eng. 28:373-385, 2000) when there is no interphase mass transfer. The study can be used as a starting first approximation solution for studying the dispersion in the cardiovascular system.
Little is known on the three-dimensional flow of couple stress Casson fluid conveying nanoparticles when the significance of Lorentz force, chaotic gesture of those minute particles and thermophoresis are significant. The intent of this investigation is to focus on the flow of such fluid along a horizontal surface due to dual stretching and internal heating. The dimensional nonlinear equations are reduced into a system of coupled nonlinear ODEs employing scaling analysis and later they are solved numerically. The results are discussed graphically for various emerged physical parameters through different plots. The results in the absence of stretching ratio factor indicate that the heat absorption parameter and Prandtl number accelerate the heat transfer rate. The temperature of the non- Newtonian couple stress fluid is found to be bigger than that of viscous case. It may be suggested that Casson couple stress nanofluid can be substituted for the corresponding viscous fluid in industrial applications for greater heat transfer. The outcomes are closely matched with the studies available in the literature as a limiting case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.