We demonstrate three-dimensional trapping of low-index particles (20-microm-diameter hollow glass spheres in water) by using a single, strongly focused, stationary dark optical vortex laser beam. The holographically generated vortex, which is similar to a TEM(01)* mode beam, was also used to trap and form ring patterns of high-index particles.
We have measured the rise time of laser-generated shock waves in vapor plated metal thin films using frequency-domain interferometry with subpicosecond time resolution. 10%- 90% rise times of <6.25 ps were found in targets ranging from 0.25 to 2.0 microm in thickness. Particle and average shock velocities were simultaneously determined. Shock velocities of approximately 5 nm/ps were inferred from the measured free surface velocity, corresponding to pressures of 30-50 kbar. Thus, the shock front extends only a few tens of lattice spacings.
The equilibrium position of a low-index particle in an optical-vortex trap was experimentally measured for two different systems: a buoyant hollow glass sphere in water and a density-matched water droplet in acetophenone. Vortex traps are the only known static, single-beam configurations allowing three-dimensional trapping of such particles in the size range of 2-50 m. The trap consists of a strongly focused Gaussian laser beam containing a holographically produced optical vortex. Using experimental and theoretical techniques, we also explored changes in the trapping efficiency owing to the vortex core size, the relative refractive index, and the numerical aperture of the focusing objective.
We report on a horn-shaped electro-optic scanner based on a ferroelectric LiTaO(3) wafer that is capable of scanning 632.8-nm light by an unprecedented 14.88 degrees angle for extraordinary polarized light and by 4.05 degrees for ordinary polarized light. The device concept is based on micropatterning ferroelectric domains in the shape of a series of optimized prisms whose refractive index is electric field tunable through the electro-optic effect. We demonstrate what we believe is a novel technique of using electro-optic imaging microscopy for in situ monitoring of the process of domain micropatterning during device fabrication, thus eliminating imperfect process control based on ex situ monitoring of transient currents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.