We have performed multipoint measurements with segmented electrodes and a microwave interferometer in the linear plasma device NAGDIS-II, in order to reveal cross-field motion and axial localization of the enhanced radial transport in the detached plasma. By changing the neutral pressure successively and applying several statistical analysis techniques, it was clarified that there is axially localized ion flux broadening accompanying an enhanced plasma ejection from the center with radially elongated spiraling structure. The spiraling plasma ejection accompanies the m=0 mode drop near the center with the similar time scale. Further, such behavior composed of f>1 kHz fluctuations is modulated by several-hundred-hertz fluctuation with m=0. This cross-field transport causes non-negligible effect for the reduction of the ion flux peak in the detached plasma.
We have investigated the particle flux flowing into the axisymmetric end-target in the transient state from attached to detached divertor conditions in the linear plasma device NAGDIS-II. In the transient state, a dramatic decrease of the mean particle flux and a large-amplitude fluctuation with negative and positive spikes were observed. We have analyzed the fluctuation with a newly suggested analysis technique: pre-multiplied cubic spectrum with the wavelet transform. Analysis result indicates that these spikes consist of a few kilohertz components.
A neutron generator (HIRRAC) for use in radiobiology study has been constructed at the Research Institute for Radiation Biology and Medicine, Hiroshima University (RIRBM). Monoenergetic neutrons of which energy is less than 1.3 MeV are generated by the 7Li(p,n)7 Be reaction at proton energies up to 3 MeV. The protons are accelerated by a Schenkel-type-accelerator and are bombared onto the 7Li-target. An apparatus for the irradiation of biological material such as mice, cultured cells and so on, was designed and will be manufactured. Neutron and gamma-ray dose rates were measured by paired (TE-TE and C-CO2) ionization chambers. Contamination of the gamma ray was less than about 6% when using 10-microns-thick 7Li as a target. Maximum dose rates for the tissue equivalent materials was 40 cGy/min at a distance of 10 cm from the target. Energy distributions of the obtained neutrons have been measured by a 3He-gas proportional counter. The monoenergetic neutrons within an energy region from 0.1 to 1.3 MeV produced by thin 7Li or 7LiF targets had a small energy spread of about 50 keV (1 sigma width of gaussian). The energy spread of neutrons was about 10% or less at an incident proton energy of 2.3 MeV. We found that HIRRAC produces small energy spread neutrons and at sufficient dose rates for use in radiobiology studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.