Young shrews of the genus Sorex that are born in early summer reduce their body size before wintering, including a reduction of brain weight of 10-30%. In the spring they mature sexually, double their body weight and regain about half of the loss in brain weight. To investigate the mechanisms of brain weight oscillations we studied the rate of cell death and generation in the brain during the whole life cycle of the common shrew (Sorex araneus) and pygmy shrew (S. minutus). After weaning, shrews generate new brain cells in only two mammalian neurogenic zones and approximately 80% of these develop into neurones. The increase of the shrew brain weight in the spring did not depend on recruitment of new cells. Moreover, adult Sorex shrews did not generate new cells in the dentate gyri. Injections of 5-HT1A receptor agonists in the adult shrews induced neurogenesis in their dentate gyri, showing the presence of dormant progenitor cells. Generation of new neurones in the subventricular zone of the lateral ventricles and their recruitment to olfactory bulbs continued throughout life. TUNEL labelling showed that the rate of cell death in all brain structures, including the proliferation zones and olfactory bulb, was very low throughout life. We conclude that neither cell death nor recruitment significantly contributes to seasonal oscillations and the net loss of brain weight in the Sorex shrews. With the exception of dentate gyrus and olfactory bulb, cellular populations of brain structures are stable throughout the life cycle of these shrews.
We investigated adult neurogenesis in two species of mammals belonging to the superorder Laurasiatheria, the southern white-breasted hedgehog (order Erinaceomorpha, species Erinaceus concolor) from Armenia and the European mole (order Soricomorpha, species Talpa europaea) from Poland. Neurogenesis in the brain of these species was examined immunohistochemically, using the endogenous markers doublecortin (DCX) and Ki-67, which are highly conserved among species. We found that in both the hedgehog and mole, like in the majority of earlier investigated mammals, neurogenesis continues in the subventricular zone (SVZ) of the lateral ventricles and in the dentate gyrus (DG). In the DG of both species, DCX-expressing cells and Ki-67-labeled cells were present in the subgranular and granular layers. In the mole, a strong bundle of DCX-labeled processes, presumably axons of granule cells, was observed in the center of the hilus. Proliferating cells (expressing Ki-67) were identified in the SVZ of lateral ventricles of both species, but neuronal precursor cells (expressing DCX) were also observed in the olfactory bulb (OB). In both species, the vast majority of cells expressing DCX in the OB were granule cells with radially orientated dendrites, although some periglomerular cells surrounding the glomeruli were also labeled. In addition, this paper is the first to show DCX-labeled fibers in the anterior commissure of the hedgehog and mole. These fibers must be axons of new neurons making interhemispheric connections between the two OB or piriform (olfactory) cortices. DCX-expressing neurons were observed in the striatum and piriform cortex of both hedgehog and mole. We postulate that in both species a fraction of cells newly generated in the SVZ migrates along the rostral migratory stream to the piriform cortex. This pattern of migration resembles that of the ‘second-wave neurons’ generated during embryonal development of the neocortex rather than the pattern observed during development of the allocortex. In spite of the presence of glial cells alongside DCX-expressing cells, we never found colocalization of DCX protein with a glial marker (vimentin or glial fibrillary acidic protein).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.