A study of the cyclical fatigue behavior of additive manufactured components, fabricated by the fused deposition modeling (FDM) process, is presented. Experimentation was designed to focus on the effect of deposition strategy or specimen mesostructure on tensile fatigue life and effective stiffness. Testing included consideration of unidirectional laminates with parallel plies having fiber orientations ranging from = 0° to = 90°, and bidirectional laminates with alternating orthogonal plies that form a layering pattern of °/(-90°) fiber orientations. Results highlight the orthotropic behavior of FDM components and suggest that tensile performance is improved by aligning fibers of unidirectional laminae more closely with the axis of applied stress. The bidirectional laminae display incrementally improved tensile fatigue performance from what appears to be an offsetting effect associated with alternating orthogonal layers. An empirical model of effective elastic modulus and an analytical model of the accumulated damage state, as defined on the basis of stiffness degradation during cyclical loading, are presented as functions of specimen mesostructure. The actual damage accumulation due to cyclical loading is compared with the model predictions, and the coefficient of determination R 2 indicates reasonable agreement for each factor combination.
This study investigates the feasibility of forming amorphous iron-based coatings using the cold spray deposition process. Splat tests of cold-sprayed SAM1651 (Fe48Mo14Cr15Y2C15B6 at.%) particles impacting a mild steel substrate were performed using varying gas temperatures and particle diameters. Specimen inspection by scanning electron microscopy revealed splat morphologies that varied from well-adhered particles to substrate craters formed by rebounded particles. Particle flow was analyzed using a finite element model, and impact conditions were predicted using an experimentally validated analytical model, in empirically generating a temperature/velocity window of successful particle deposition as a framework for ongoing work on the formation of cold-sprayed SAM1651 coatings. The results indicate that the unique characteristics of the cold spray process offer a promising means for the formation of metallic glass coatings that successfully retain the amorphous structure, as well as the superior corrosion and wear resistant properties of the feedstock powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.