The primary objective of this investigation is to determine experimentally the sources of jet mixing noise. In the present study, four different approaches are used. It is reasonable to assume that the characteristics of the noise sources are imprinted on their radiation fields. Under this assumption, it becomes possible to analyse the characteristics of the far-field sound and then infer back to the characteristics of the sources. The first approach is to make use of the spectral and directional information measured by a single microphone in the far field. A detailed analysis of a large collection of far-field noise data has been carried out. The purpose is to identify special characteristics that can be linked directly to those of the sources. The second approach is to measure the coherence of the sound field using two microphones. The autocorrelations and cross-correlations of these measurements offer not only valuable information on the spatial structure of the noise field in the radial and polar angle directions, but also on the sources inside the jet. The third approach involves measuring the correlation between turbulence fluctuations inside a jet and the radiated noise in the far field. This is the most direct and unambiguous way of identifying the sources of jet noise. In the fourth approach, a mirror microphone is used to measure the noise source distribution along the lengths of high-speed jets. Features and trends observed in noise source strength distributions are expected to shed light on the source mechanisms. It will be shown that all four types of data indicate clearly the existence of two distinct noise sources in jets. One source of noise is the fine-scale turbulence and the other source is the large turbulence structures of the jet flow. Some of the salient features of the sound field associated with the two noise sources are reported in this paper.
The primary objective of this investigation is to determine experimentally the sources of jet mixing noise. In the present study, four different approaches are used. It is reasonable to assume that the characteristics of the noise sources are imprinted on their radiation fields. Under this assumption, it becomes possible to analyse the characteristics of the far-field sound and then infer back to the characteristics of the sources. The first approach is to make use of the spectral and directional information measured by a single microphone in the far field. A detailed analysis of a large collection of far-field noise data has been carried out. The purpose is to identify special characteristics that can be linked directly to those of the sources. The second approach is to measure the coherence of the sound field using two microphones. The autocorrelations and cross-correlations of these measurements offer not only valuable information on the spatial structure of the noise field in the radial and polar angle directions, but also on the sources inside the jet. The third approach involves measuring the correlation between turbulence fluctuations inside a jet and the radiated noise in the far field. This is the most direct and unambiguous way of identifying the sources of jet noise. In the fourth approach, a mirror microphone is used to measure the noise source distribution along the lengths of high-speed jets. Features and trends observed in noise source strength distributions are expected to shed light on the source mechanisms. It will be shown that all four types of data indicate clearly the existence of two distinct noise sources in jets. One source of noise is the fine-scale turbulence and the other source is the large turbulence structures of the jet flow. Some of the salient features of the sound field associated with the two noise sources are reported in this paper.
A systematic study has been undertaken to quantify the effect of jet temperature on the noise radiated by subsonic jets. Nozzles of different diameters were tested to uncover the effects of Reynolds number. All the tests were carried out at Boeing's Low Speed Aeroacoustic Facility, with simultaneous measurement of thrust and noise. It is concluded that the change in spectral shape at high jet temperatures, normally attributed to the contribution from dipoles, is due to Reynolds number effects and not dipoles. This effect has not been identified before. A critical value of the Reynolds number that would need to be maintained to avoid the effects associated with low Reynolds number has been estimated to be ${\sim}$400 000. It is well-known that large-scale structures are the dominant generators of noise in the peak radiation direction for high-speed jets. Experimental evidence is presented that shows the spectral shape at angles close to the jet axis from unheated low subsonic jets to be the same as from heated supersonic jets. A possible mechanism for the observed trend is proposed. When a subsonic jet is heated with the Mach number held constant, there is a broadening of the angular sector in which peak radiation occurs. Furthermore, there is a broadening of the spectral peak. Similar trends have been observed at supersonic Mach numbers. The spectral shapes in the forward quadrant and in the near-normal angles from unheated and heated subsonic jets also conform to the universal shape obtained from supersonic jet data. Just as for unheated jets, the peak frequency at angles close to the jet axis is independent of jet velocity as long as the acoustic Mach number is less than unity. The extensive database generated in the current test programme is intended to provide test cases with high-quality data that could be used for the evaluation of theoretical/semi-theoretical jet noise prediction methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.