Summary
Dietary iron intake and systemic iron balance are implicated in colorectal cancer (CRC) development, but the means by which iron contributes to CRC are unclear. Gene expression and functional studies demonstrated that the cellular iron importer, divalent metal transporter 1 (DMT1), is highly expressed in CRC through hypoxia inducible factor 2α-dependent transcription. Colon-specific Dmt1 disruption resulted in a tumor-selective inhibitory effect of proliferation in mouse colon tumor models. Proteomic and genomic analysis identified an iron-regulated signaling axis mediated by cyclin dependent kinase 1 (CDK1), JAK1 and STAT3 in CRC progression. A pharmacological inhibitor of DMT1 antagonized the ability of iron to promote tumor growth in a CRC mouse model and a patient-derived CRC enteroid orthotopic model. Our studies implicate a growth-promoting signaling network instigated by elevated intracellular iron levels in tumorigenesis, offering molecular insights into how a key dietary component may contribute to CRC.
Glucagon drives hepatic gluconeogenesis and maintains blood glucose levels during fasting. The mechanism that attenuates glucagon action following refeeding is not understood. The present study demonstrates an increase in perivenous liver hypoxia immediately after feeding which stabilizes hypoxia-inducible factor (HIF)2α in liver. The transient postprandial increase in hepatic HIF2α attenuates glucagon signaling. Hepatocyte-specific disruption of HIF2α increases postprandial blood glucose and potentiates the glucagon response. Independent of insulin/AKT signaling, activation of hepatic HIF2α resulted in lower blood glucose, improved glucose tolerance and decreased gluconeogenesis due to blunted hepatic glucagon action. Mechanistically, HIF2α abrogated glucagon-PKA signaling by activating cAMP-phosphodiesterases in a MEK/ERK-dependent manner. Repression of glucagon signaling by HIF2α ameliorated hyperglycemia in streptozotocin-induced diabetes and acute insulin resistant animal models. This study reveals that HIF2α is essential for the acute postprandial regulation of hepatic glucagon signaling, and suggests HIF2α as a potential therapeutic target in the treatment of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.