Background & Aims Hypoxic inflammation (decreased oxygen tension at sites of inflammation) is a feature of inflammatory bowel disease (IBD). The hypoxia response is mediated by the transcription factors hypoxia-inducible factor (HIF)1α and endothelial PAS domain protein 1 (EPAS1 or HIF2α), which are induced in intestinal tissues of patients with IBD. HIF1α limits intestinal barrier dysfunction, but the role of EPAS1 has not been assessed under conditions of hypoxic inflammation or in models of IBD. Methods Acute colitis was induced by administration of Citrobacter rodentium ordextran sulfate sodium (DSS) to transgenic hypoxia reporter mice (ODD-Luc), mice with conditional overexpression of Epas1 (Epas1LSL/LSL), mice with intestinal epithelium-specific deletion of Epas1 (Epas1ΔIE), or wild-type littermates (controls). Colon tissues from these mice and from patients with ulcerative colitis (UC) or Crohn's disease (CD) were assessed by histologic and immunoblot analyses, immunohistochemistry, and quantitative PCR. Results Levels of hypoxia and EPAS1 were increased in colon tissues of mice following induction of colitis and patients with UC or CD, compared with controls. Epas1ΔIE mice had attenuated colonic inflammation and were protected from DSS-induced colitis. Intestine-specific overexpression of EPAS1, but not HIF-1α, led to spontaneous colitis, increased susceptibility to induction of colitis by C rodentium or DSS, and reduced survival times compared with controls. Disruption of intestinal epithelial EPAS1 attenuated the inflammatory response following administration of DSS or C rodentium, whereas intestine-specific overexpression of EPAS1 increased this response. We found EPAS1 to be a positive regulator of tumor necrosis factor (TNF)α production by the intestinal epithelium. Blocking TNFα completely reduced hypoxia-induced intestinal inflammation. We found EPAS1 to be a positive regulator of tumor necrosis factor (TNF)α production by the intestinal epithelium. Blocking TNFα completely reduced hypoxia-induced intestinal inflammation. Conclusions EPAS1 is a transcription factor that activates mediators of inflammation, such as TNFα, in the intestinal epithelium and promotes development of colitis in mice.
Oxygen dynamics in the liver is a central signaling mediator controlling hepatic homeostasis, and dysregulation of cellular oxygen is associated with liver injury. Moreover, the transcription factor relaying changes in cellular oxygen levels, hypoxia-inducible factor (HIF), is critical in liver metabolism and sustained increase in HIF signaling can lead to spontaneous steatosis, inflammation, and liver tumorigenesis. However, the direct responses and genetic networks regulated by HIFs in the liver are unclear. To help define the HIF signal transduction pathway, an animal model of HIF overexpression was generated and characterized. In this model, overexpression was achieved by Von Hippel-Lindau (Vhl) disruption in a liver-specific temporal fashion. Acute disruption of Vhl induced hepatic lipid accumulation in a HIF-2α-dependent manner. In addition, HIF-2α activation rapidly increased liver inflammation and fibrosis demonstrating that steatosis and inflammation are primary responses of the liver to hypoxia. To identify downstream effectors, a global microarray expression analysis was performed using livers lacking Vhl for 24-hours and 2-weeks, revealing a time-dependent effect of HIF on gene expression. Increase in genes involved in fatty acid synthesis were followed by an increase in fatty acid uptake-associated genes, and an inhibition of fatty acid β-oxidation. A rapid increase in pro-inflammatory cytokines and fibrogenic gene expression was also observed. In vivo chromatin immunoprecipitation assays revealed novel direct targets of HIF signaling that may contribute to hypoxia-mediated steatosis and inflammation. These data suggest that HIF-2α is a critical mediator in progression from clinically manageable steatosis to more severe steatohepatitis and liver cancer, and may be a potential therapeutic target.
Summary Dietary iron intake and systemic iron balance are implicated in colorectal cancer (CRC) development, but the means by which iron contributes to CRC are unclear. Gene expression and functional studies demonstrated that the cellular iron importer, divalent metal transporter 1 (DMT1), is highly expressed in CRC through hypoxia inducible factor 2α-dependent transcription. Colon-specific Dmt1 disruption resulted in a tumor-selective inhibitory effect of proliferation in mouse colon tumor models. Proteomic and genomic analysis identified an iron-regulated signaling axis mediated by cyclin dependent kinase 1 (CDK1), JAK1 and STAT3 in CRC progression. A pharmacological inhibitor of DMT1 antagonized the ability of iron to promote tumor growth in a CRC mouse model and a patient-derived CRC enteroid orthotopic model. Our studies implicate a growth-promoting signaling network instigated by elevated intracellular iron levels in tumorigenesis, offering molecular insights into how a key dietary component may contribute to CRC.
Hypoxia-inducible factor (HIF), a key modulator of the transcriptional response to hypoxia, is increased in colon cancer. However, the role of HIF in colon carcinogenesis in vivo remains unclear. In this study, we found that intestinal epithelium-specific disruption of the von Hippel-Lindau tumor suppressor protein (VHL) resulted in constitutive HIF signaling, and increased HIF expression augmented colon tumorigenesis in the Apcmin/+ intestinal tumor model. Intestine-specific disruption of Vhl increased colon tumor multiplicity and progression from adenomas to carcinomas. These effects were ameliorated in mice with double disruption of Vhl and HIF-2α. Activation of HIF signaling resulted in increased cell survival in normal colon tissue, however tumor apoptosis was not affected. Interestingly, a robust activation of cyclin D1 was observed in tumors of Apcmin/+ mice in which HIF-2α was activated in the intestine. Consistent with this result, BrdU incorporation indicated that cellular proliferation was increased in colon tumors following HIF activation. Further analysis demonstrated that dysregulation of the intestinal iron absorption transporter divalent metal transporter-1 (DMT-1) was a critical event in HIF-2α-mediated colon carcinogenesis. These data provide a mechanistic basis for the widely reported link between iron accumulation and colon cancer risk. Together, our findings demonstrate that a chronic increase in HIF-2α in the colon initiates pro-tumorigenic signaling which may have important implications in developing preventive and therapeutic strategies for colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.