For aerial robots, maintaining a high vantage point for an extended time is crucial in many applications. However, available on-board power and mechanical fatigue constrain their flight time, especially for smaller, battery-powered aircraft. Perching on elevated structures is a biologically inspired approach to overcome these limitations. Previous perching robots have required specific material properties for the landing sites, such as surface asperities for spines, or ferromagnetism. We describe a switchable electroadhesive that enables controlled perching and detachment on nearly any material while requiring approximately three orders of magnitude less power than required to sustain flight. These electroadhesives are designed, characterized, and used to demonstrate a flying robotic insect able to robustly perch on a wide range of materials, including glass, wood, and a natural leaf.
For the first time, {111} ordering (CuPt type) has been observed in InAs1−xSbx alloys in a wide compositional range from x=0.22 to 0.88. The order-induced spots show the highest intensity for x≊0.5 samples and the lowest intensity toward each binary end compound. Only two of the four variants are formed during growth. In some areas the degree of order for these two variants is equal, and in other areas one variant dominates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.