Control of the radial electric field, Er, is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric fields have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially to produce a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by (1) changing the radial profile of the effective helical ripples, εh, (2) creating a magnetic island with an external perturbation field coil and (3) changing the local island divertor coil current.
have started this year after a successful eight-year construction and test period of the fully superconducting facility. LHD investigates a variety of physics issues on large scale heliotron plasmas ͑Rϭ3.9 m, aϭ0.6 m͒, which stimulates efforts to explore currentless and disruption-free steady plasmas under an optimized configuration. A magnetic field mapping has demonstrated the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. Heating by 3 MW of neutral beam injection ͑NBI͒ has produced plasmas with a fusion triple product of 8ϫ10 18 keV m Ϫ3 s at a magnetic field of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.4 keV have been achieved. The maximum stored energy has reached 0.22 MJ, which corresponds to ͗͘ϭ0.7%, with neither unexpected confinement deterioration nor visible magnetohydrodynamics ͑MHD͒ instabilities. Energy confinement times, reaching 0.17 s at the maximum, have shown a trend similar to the present scaling law derived from the existing medium sized helical devices, but enhanced by 50%. The knowledge on transport, MHD, divertor, and long pulse operation, etc., are now rapidly increasing, which implies the successful progress of physics experiments on helical currentless-toroidal plasmas.
The dynamics of a magnetic island is studied by focusing on the poloidal flows in the helical devices LHD and TJ-II. An experimental result implying the temporal increment of the E × B poloidal flow prior to the magnetic island transition from growth to healing is observed. The direction of the poloidal flow is in the electron-diamagnetic direction in LHD and in the ion-diamagnetic direction in TJ-II. From the magnetic diagnostics, it is observed that a current structure flowing in the plasma moves ∼π rad poloidally in the electron-diamagnetic direction during the transition in LHD experiments. These experimental observations from LHD and TJ-II show that the temporal increment of the poloidal flow is followed by the transition (growth to healing) of the magnetic island regardless of the flow direction and suggests the fact that a significant poloidal flow affects the magnetic island dynamics.
The superconducting machine LHD has conducted long pulse experiments for four years to achieve long-duration plasmas with high performance. The operational regime was largely extended in discharge duration and plasma density. In this paper, the plasma characteristics, in particular, plasma performance and impurity behaviour in long pulse discharges are described. Confinement studies show that global energy confinement times are comparable to those in short pulse discharges. Long sustainment of high performance plasma, which is equivalent to the previous achievement in other devices, was demonstrated. Long pulse discharges enabled us to investigate impurity behaviour in a long timescale. Intrinsic metallic impurity accumulation was observed in a narrow density window (2–3×1019 m−3) only for hydrogen discharges. Impurity transport study by using active impurity pellet injection shows a long impurity confinement time and an inward convection in the impurity accumulation window, which is consistent with the intrinsic impurity behaviour. The pulsed neon gas injection experiment shows that the neon penetration into the plasma core is caused by the inward convection due to radial electric field. Finally, impurity accumulation control with an externally induced magnetic island at the plasma edge was demonstrated.
Pellet injection has been used as a primary fueling scheme in Large Helical Device (LHD). Pellet injection has extended an operational region of NBI plasmas to higher densities with maintaining preferable dependence of energy confinement on density, and achieved several important data, such as plasma stored energy (0.88 MJ), energy confinement time (0.3 s), β (2.4 % at 1.3 T) and density (1.1×10 20 m-3). These parameters cannot be attained by gas puffing. Ablation and subsequent behavior of plasma has been investigated. Measured pellet penetration depth that is estimated by duration of the Hα emission is shallower than predicted penetration depth from the simple neutral gas shielding (NGS) model. The penetration depth can be explained by NGS model with fast ion effect on the ablation. Just after ablation, redistribution of ablated pellet mass was observed in short time (~ 400 µs). The redistribution causes shallow deposition and low fueling efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.