Aim The aim of this study was to assess the influence of island area, distance to source pool, latitude, habitat diversity and habitat type on species richness of forest birds in the Andaman islands. Location The Andaman islands (India) in the Bay of Bengal. Methods The distributions of 47 species of forest birds were surveyed on 45 islands in the Andaman islands across a latitudinal gradient. The size of the island and distance to the nearest large island were assessed on a satellite image of 1 : 250,000 scale. The number and types of habitats and the species richness of birds on each island were recorded during a field survey. The effects of the variables measured on the species richness of forest birds were assessed using regression analyses. The best fit models were selected for interpretation of the results. Separate analyses were conducted with selected islands to eliminate the effects of latitude and to control the effects of area and habitat diversity. Results The number of species of forest birds was strongly influenced by island area and habitat diversity. However the key determinant of species richness was habitat type, particularly the presence of wet forests. Wet forests, either semi‐evergreen or evergreen tropical forests are more common towards the southern islands and are usually restricted to larger islands. Main conclusions Area, habitat diversity and the presence of wet forests on islands significantly influenced species richness of forest birds. The wet forests maintain the biodiversity of the Andamans and should be regarded as a ‘keystone habitat’. This is probably because wet forests are species rich and also because the Andaman biota has affinities with that of the Malay peninsula where wet forests predominate. Therefore biogeographical history probably plays an important role in influencing biodiversity at a regional scale.
Areas within regional landscapes that make a disproportionate contribution to supporting large herbivore populations have been interpreted as key resource areas, hotspots, buffers, stepping stones or serving other functional roles. We investigated the role that the restricted extent of habitat types exploited at different stages of the seasonal cycle might play in limiting the abundance of a blue wildebeest subpopulation in the Kruger National Park, South Africa. GPS collars enabled the space use patterns of the animals to be related to available habitat types, and faecal nutrient concentrations to be related to the habitats exploited at that time. Wildebeest herds occupied primarily grazing lawn grasslands associated with gabbro uplands or sodic lowlands through the wet season into the early dry season. During the late dry season, they switched to seep‐zone grasslands in mid slope regions of granitic landscapes. Use of recently burned areas enhanced forage quality at the beginning of the wet season. The seasonal habitat shifts enabled wildebeest to obtain adequate nitrogen, phosphorus and sodium throughout the year. Lawn and seep‐zone grasslands combined constituted 10% of the available area. Grazing lawns, which encompassed only ˜ 3% of the study area, appeared to be the primary limitation on the abundance of wildebeest. However, the greater security from predation provided by the open vegetation cover in the grazing lawns is not easily disentangled from the resource benefits that they yield. Nevertheless, findings indicate how local abundance can be restricted by the extent of portions of the landscape providing crucial benefits during particular phases of the seasonal cycle. Hence the key resources concept needs to be expanded to accommodate the functionally distinct contributions made by different habitats towards supporting local herbivore populations.
Movement is a key mean for mobile species to cope with heterogeneous environments. While in herbivorous mammals large-scale migration has been widely investigated, fine-scale movement responses to local variations in resources and predation risk remain much less studied, especially in savannah environments. We developed a novel approach based on complementary movement metrics (residence time, frequency of visits and regularity of visits) to relate movement patterns of a savannah grazer, the blue wildebeest Connochaetes taurinus, to fine-scale variations in food availability, predation risk and water availability in the Kruger National Park, South Africa. Wildebeests spent more time in grazing lawns where the grass is of higher quality but shorter than in seep zones, where the grass is of lower quality but more abundant. Although the daily distances moved were longer during the wet season compared to the dry season, the daily net displacement was lower, and the residence time higher, indicating a more frequent occurrence of area-concentred searching. In contrast, during the late dry season the foraging sessions were more fragmented and wildebeests moved more frequently between foraging areas. Surprisingly, predation risk appeared to be the second factor, after water availability, influencing movement during the dry season, when resources are limiting and thus expected to influence movement more. Our approach, using complementary analyses of different movement metrics, provided an integrated view of changes in individual movement with varying environmental conditions and predation risk. It makes it possible to highlight the adaptive behavioral decisions made by wildebeest to cope with unpredictable environmental variations and provides insights for population conservation.
Abstract. Niche separation among species with similar resource requirements can be expressed at various spatiotemporal scales, from the resource components selected at feeding sites to habitat and home range occupation and ultimately geographic distribution ranges. African large herbivores present a challenge to niche theory because multiple species commonly overlap both spatially and in vegetation components consumed. Aided by GPS telemetry, we investigated the space use patterns of two large grazers that are frequently associated in mixed-species aggregations. Specifically, we compared a generalist grazer with hindgut fermentation (plains zebra) with a similar-sized grazing ruminant (blue wildebeest) in west-central Kruger National Park, South Africa. We found that herds of the two species overlapped substantially in the home ranges that they occupied, but exploited spatially distinct foraging arenas for periods lasting several days or weeks within these ranges. Moreover, wildebeest and zebra differed in duration of settlement, extent of areas occupied during settlement, consequent exploitation intensity per unit area, proportion of time spent within foraging arenas relative to roaming interludes, and movement rates while within these arenas. In particular, wildebeest herds concentrated within small areas for prolonged periods, while zebra herds used more foraging arenas but exploited them for briefer periods. Both species overlapped substantially in habitat use, although wildebeest more strongly favored gabbro uplands and sodic sites presenting short grass lawns while zebra made greater use of areas with a taller grass cover. Hence resource partitioning was expressed mainly through behavioral distinctions in patch exploitation at foraging arena scale rather than in home range or habitat separation. Although zebra may have been partially excluded from the grasslands kept short by wildebeest, these sites formed only a small part of the wider ranges utilized by zebra, thereby restricting the competitive consequences. Hence spatially nested resource partitioning of this form contributes to the coexistence of these two grazers, and may be a mechanism enabling niche separation among other species.
The Critically Endangered Sumatran rhinoceros Dicerorhinus sumatrensis formerly ranged across South-east Asia. Hunting and habitat loss have made it one of the rarest large mammals and the species faces extinction despite decades of conservation efforts. The number of individuals remaining is unknown as a consequence of inadequate methods and lack of funds for the intensive field work required to estimate the population size of this rare and solitary species. However, all information indicates that numbers are low and declining. A few individuals persist in Borneo, and three tiny populations remain on the Indonesian island of Sumatra and show evidence of breeding. Rhino Protection Units are deployed at all known breeding sites but poaching and a presumed low breeding rate remain major threats. Protected areas have been created for the rhinoceros and other in situ conservation efforts have increased but the species has continued to go locally extinct across its range. Conventional captive breeding has also proven difficult; from a total of 45 Sumatran rhinoceros taken from the wild since 1984 there were no captive births until 2001. Since then only two pairs have been actively bred in captivity, resulting in four births, three by the same pair at the Cincinnati Zoo and one at the Sumatran Rhino Sanctuary in Sumatra, with the sex ratio skewed towards males. To avoid extinction it will be necessary to implement intensive management zones, manage the metapopulation as a single unit, and develop advanced reproductive techniques as a matter of urgency. Intensive census efforts are ongoing in Bukit Barisan Selatan but elsewhere similar efforts remain at the planning stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.