Articles you may be interested inContactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1−xBix dilute bismide with x ≤ 0.034 Appl. Phys. Lett. 105, 222104 (2014); 10.1063/1.4903179 Contactless electroreflectance of In As ∕ In 0.53 Ga 0.23 Al 0.24 As quantum dashes grown on InP substrate: Analysis of the wetting layer transition
Unstrained Ge1−xSnx layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge0.97Sn0.03 layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge1−xSnx layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge1−xSnx alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge0.97Sn0.03 with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge1−xSnx layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.
International audienceThe optical absorption and thermal conductivity of GaAsPN absorbers are investigated by means of optical absorption spectroscopy and photo-thermal deflection spectroscopy (PDS) for different 100 nm-thick GaAsNP/GaP samples under different growth conditions and various post-growth annealing temperatures. It is first shown that the As content strongly modifies the optical absorption spectrum of the GaAsPN: with a maximum absorption coefficient of 38,000 cm À 1 below the GaP bandgap energy. The optical absorption and thermal conductivities of the samples are then evaluated for various growth and annealing conditions using PDS: the results showing overall agreement with optical absorption spec-troscopy measurements. A significant improvement in optical absorption and thermal conductivity after annealing is demonstrated. The best thermal conductivity measured is equal to 4 W/m K. These results are promising for the development of absorbers in multijunction solar-cell architecture
The electronic band structure of phosphorus-rich GaNxPyAs1−x−y alloys (x ~ 0.025 and y ≥ 0.6) is studied experimentally using optical absorption, photomodulated transmission, contactless electroreflectance, and photoluminescence. It is shown that incorporation of a few percent of N atoms has a drastic effect on the electronic structure of the alloys. The change of the electronic band structure is very well described by the band anticrossing (BAC) model in which localized nitrogen states interact with the extended states of the conduction band of GaAsP host. The BAC interaction results in the formation of a narrow intermediate band (E− band in BAC model) with the minimum at the Γ point of the Brillouin zone resulting in a change of the nature of the fundamental band gap from indirect to direct. The splitting of the conduction band by the BAC interaction is further confirmed by a direct observation of the optical transitions to the E+ band using contactless electroreflectance spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.