BACKGROUND-High-dose erythropoietin has been shown to have a neuroprotective effect in preclinical models of neonatal brain injury, and phase 2 trials have suggested possible efficacy; however, the benefits and safety of this therapy in extremely preterm infants have not been established.
METHODS-In this multicenter, randomized, double-blind trial of high-dose erythropoietin, we assigned 941 infants who were born at 24 weeks 0 days to 27 weeks 6 days of gestation to receive erythropoietin or placebo within 24 hours after birth.
SUMMARY
Mice lacking the proneural transcription factor Math1 (Atoh1) lack multiple neurons of the proprioceptive and arousal systems and die shortly after birth from an apparent inability to initiate respiration. We sought to determine whether Math1 was necessary for the development of hindbrain nuclei involved in respiratory rhythm generation, such as the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN), defects in which are associated with Congenital Central Hypoventilation Syndrome (CCHS). Using a new Math1-GFP fusion allele, we traced the development of Math1-expressing pFRG/RTN and paratrigeminal neurons and found that loss of Math1 did indeed disrupt their migration and differentiation. We also identified new Math1-dependent neurons and their projections in the pre-Bötzinger complex, a structure critical for respiratory rhythmogenesis, and found that glutamatergic modulation reestablished a rhythm in the absence of Math1. This study identifies Math1-dependent neurons that are critical for perinatal breathing that may link proprioception and arousal with respiration.
Hindbrain networks important for sensation and arousal contain diverse neuronal populations with distinct projections, yet share specific characteristics such as neurotransmitter expression. The relationship between the function of these neurons, their developmental origin, and the timing of their migration remains unclear. Mice lacking the proneural transcription factor Math1 (Atoh1) lose neurons essential for hearing, balance, and unconscious proprioception. By using a new, inducible Math1 Cre*PR allele, we found that Math1 is also required for the conscious proprioceptive system, including excitatory projection neurons of the dorsal column nuclei and for vital components of the interoceptive system, such as Barrington's nucleus, that is closely associated with arousal. In addition to specific networks, Math1 lineages shared specific neurotransmitter expression, including glutamate, acetylcholine, somatostatin, corticotropin releasing hormone, and nitric oxide. These findings identify twenty novel Math1 lineages and indicate that the Math1 network functions partly as an interface for conscious (early-born) and unconscious (late-born) proprioceptive inputs to the cortex and cerebellum, respectively. In addition, these data provide previously unsuspected genetic and developmental links between proprioception, interoception, hearing, and arousal.auditory ͉ dorsal columns ͉ medial lemniscus ͉ proneural ͉ rhombic lip
Objectives To determine the relationship between the emergence of COVID-19 and neonatal intensive care unit (NICU) family presence as well as how NICU design affects these changes. Study design A cross-sectional survey from April 21 to 30, 2020. We queried sites regarding NICU demographics, NICU restrictions on parental presence, and changes in ancillary staff availability. Results Globally, 277 facilities responded to the survey. NICU policies preserving 24/7 parental presence decreased (83-53%, p < 0.001) and of preserving full parental participation in rounds fell (71-32%, p < 0.001). Single-family room design NICUs best preserved 24/7 parental presence after the emergence of COVID-19 (single-family room 65%, hybriddesign 57%, open bay design 45%, p = 0.018). In all, 120 (43%) NICUs reported reductions in therapy services, lactation medicine, and/or social work support. Conclusions Hospital restrictions have significantly limited parental presence for NICU admitted infants, although singlefamily room design may attenuate this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.