The rhombic lip (RL) is an embryonic proliferative neuroepithelium that generates several groups of hindbrain neurons. However, the precise boundaries and derivatives of the RL have never been genetically identified. We use beta-galactosidase expressed from the Math1 locus in Math1-heterozygous and Math1-null mice to track RL-derived cells and to evaluate their developmental requirements for Math1. We uncover a Math1-dependent rostral rhombic-lip migratory stream (RLS) that generates some neurons of the parabrachial, lateral lemniscal, and deep cerebellar nuclei, in addition to cerebellar granule neurons. A more caudal Math1-dependent cochlear extramural stream (CES) generates the ventral cochlear nucleus and cochlear granule neurons. Similarly, mossy-fiber precerebellar nuclei require Math1, whereas the inferior olive and locus coeruleus do not. We propose that Math1 expression delimits the extent of the rhombic lip and is required for the generation of the hindbrain superficial migratory streams, all of which contribute neurons to the proprioceptive/vestibular/auditory sensory network.
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder characterized by the loss of acquired motor and language skills, autistic features, and unusual stereotyped movements. RTT is caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Mutations in
MECP2
cause a variety of neurodevelopmental disorders including X-linked mental retardation, psychiatric disorders, and some cases of autism. Although MeCP2 was identified as a methylation-dependent transcriptional repressor, transcriptional profiling of RNAs from mice lacking MeCP2 did not reveal significant gene expression changes, suggesting that MeCP2 does not simply function as a global repressor. Changes in expression of a few genes have been observed, but these alterations do not explain the full spectrum of Rett-like phenotypes, raising the possibility that additional MeCP2 functions play a role in pathogenesis. In this study, we show that MeCP2 interacts with the RNA-binding protein Y box-binding protein 1 and regulates splicing of reporter minigenes. Importantly, we found aberrant alternative splicing patterns in a mouse model of RTT. Thus, we uncovered a previously uncharacterized function of MeCP2 that involves regulation of splicing, in addition to its role as a transcriptional repressor.
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an expanded glutamine tract in human Ataxin-1 (hAtx-1). The expansion stabilizes hAtx-1, leading to its accumulation. To understand how stabilized hAtx-1 induces selective neuronal degeneration, we studied Drosophila Atx-1 (dAtx-1), which has a conserved AXH domain but lacks a polyglutamine tract. Overexpression of hAtx-1 in fruit flies produces phenotypes similar to those of dAtx-1 but different from the polyglutamine peptide alone. We show that the Drosophila and mammalian transcription factors Senseless/Gfi-1 interact with Atx-1's AXH domain. In flies, overexpression of Atx-1 inhibits sensory-organ development by decreasing Senseless protein. Similarly, overexpression of wild-type and glutamine-expanded hAtx-1 reduces Gfi-1 levels in Purkinje cells. Deletion of the AXH domain abolishes the effects of glutamine-expanded hAtx-1 on Senseless/Gfi-1. Interestingly, loss of Gfi-1 mimics SCA1 phenotypes in Purkinje cells. These results indicate that the Atx-1/Gfi-1 interaction contributes to the selective Purkinje cell degeneration in SCA1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.