Membrane vesicles isolated from Escherichia coli grown under various conditions generate a transmembrane pH gradient (delta pH) of about 2 pH units (interior alkaline) under appropriate conditions when assayed by flow dialysis. Using the distribution of weak acids to measure delta pH and the distribution of the lipophilic cation triphenylmethylphosphonium to measure the electrical potential (delta psi) across the membrane, the vesicles are demonstrated to develop an electrochemical proton gradient (delta-muH+) of almost - 200 mV (interior negative and alkaline) at pH 5.5 in the presence of reduced phenazine methosulfate or D-lactate, the major component of which is a deltapH of about - 120 mV. As external pH is increased, deltapH decreases, reaching 0 at about pH 7.5 and above, while delta psi remains at about - 75 mV and internal pH remains at pH 7.5-7.8. The variations in deltapH correlate with changes in the oxidation of reduced phenazine methosulfate or D-lactate, both of which vary with external pH in a manner similar to that described for deltapH. Finally, deltapH and delta psi can be varied reciprocally in the presence of valinomycin and nigericin with little change in delta-muH+ and no change in respiratory activity. These data and those presented in the following paper (Ramos and Kaback 1976) provide strong support for the role of chemiosmotic phenomena in active transport and extend certain aspects of the chemiosmotic hypothesis.
Deamino-NADH/ubiquinone 1 oxidoreductase activity in membrane preparations from Escherichia coli GR19N is 20-50% of NADH/ubiquinone 1 oxidoreductase activity. In comparison, membranes from E. coli IY91, which contain amplified levels of NADH dehydrogenase, exhibit about 100-fold higher NADH/ubiquinone 1 reductase activity but about 20-fold less deamino-NADH/ubiquinone 1 reductase activity. Deamino-NADH/ubiquinone 1 reductase is more sensitive than NADH/ubiquinone 1 reductase activity to inhibition by 3-undecyl-2-hydroxyl-1,4-naphthoquinone, piericidin A, or myxothiazol. Furthermore, GR19N membranes exhibit two apparent Kms for NADH but only one for deamino-NADH. Inside-out membrane vesicles from E. coli GR19N generate a H+ electrochemical gradient (interior positive and acid) during electron transfer from deamino-NADH to ubiquinone 1 that is large and stable relative to that observed with NADH as substrate. Generation of the H+ electrochemical gradient in the presence of deamino-NADH is inhibited by 3-undecyl-2-hydroxy-1,4-naphthoquinone and is not observed in IY91 membrane vesicles or in vesicles from GR19N that are deficient in deamino-NADH/ubiquinone 1 reductase activity. The data provide a strong indication that the E. coli aerobic respiratory chain contains two species of NADH dehydrogenases: (i) an enzyme (NADH dh I) that reacts with deamino-NADH or NADH whose turnover leads to generation of a H+ electrochemical gradient at a site between the primary dehydrogenase and ubiquinone and (ii) an enzyme (NADH dh II) that reacts with NADH exclusively whose turnover does not lead to generation of a H+ electrochemical gradient between the primary dehydrogenase and ubiquinone 1.
Using a lactose permease mutant devoid of Cys residues (C-less permease), Asp237 and Lys358 were replaced with Cys or other amino acids to pursue the proposal that the two residues form a charge pair [King, S. C., Hansen, C. L., & Wilson, T.H. (1991) Biochim. Biophys. Acta 1062, 177-186]. Individual replacement of Asp237 with Cys, Ala, or Lys or replacement of Lys358 with Cys, Ala, or Asp virtually abolishes active lactose transport. However, simultaneous replacement of both residues with Cys and/or Ala yields permease with high activity. Therefore, neutral amino acid substitutions at either position are detrimental only because they leave the opposing charge unpaired. Strikingly, moreover, when Asp237 is interchanged with Lys358, high activity is observed. The results indicate strongly that Asp237 and Lys358 interact to form a salt bridge and that neither residue nor the salt bridge per se is important for activity. Immunoblots reveal low membrane levels of the active mutants lacking the putative salt bridge, suggesting a role for the salt bridge in either permease folding or stability and raising the possibility that the salt bridge may exist in a folding intermediate but not in the mature protein. Remarkably, however, a mutant with Cys in place of Asp237 is restored to full activity by carboxymethylation which recreates a negative charge at position 237. Pulse-chase analysis and heat-inactivation studies indicate that the stability of the double mutant with Cys at positions 237 and 358 is comparable to C-less. Therefore, the interaction between Asp237 and Lys358 is likely to be important for permease folding and is maintained in the mature protein.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.