Objective. To develop and test a risk-scoring model for the prediction of endometrial cancer among symptomatic postmenopausal women at risk of intrauterine malignancy. Methods. We prospectively studied 624 postmenopausal women with vaginal bleeding and endometrial thickness > 4 mm undergoing diagnostic hysteroscopy. Patient characteristics and endometrial assessment of women with or without endometrial cancer were compared. Then, a risk-scoring model, including the best predictors of endometrial cancer, was tested. Univariate, multivariate, and ROC curve analysis were performed. Finally, a split-sampling internal validation was also performed. Results. The best predictors of endometrial cancer were recurrent vaginal bleeding (odds ratio (OR) = 2.96), the presence of hypertension (OR = 2.01) endometrial thickness > 8 mm (OR = 1.31), and age > 65 years (OR = 1.11). These variables were used to create a risk-scoring model (RHEA risk-model) for the prediction of intrauterine malignancy, with an area under the curve of 0.878 (95% CI 0.842 to 0.908; P < 0.0001). At the best cut-off value (score ≥ 4), sensitivity and specificity were 87.5% and 80.1%, respectively. Conclusion. Among symptomatic postmenopausal women with endometrial thickness > 4 mm, a risk-scoring model including patient characteristics and endometrial thickness showed a moderate diagnostic accuracy in discriminating women with or without endometrial cancer. Based on this model, a decision algorithm was developed for the management of such a population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.