We study the normal modes and quasi-normal modes (QNMs) in circular dielectric microcavities through non-Hermitian Hamiltonian, which come from the modifications due to system-environment coupling. Differences between the two types of modes are studied in detail, including the existence of resonances tails. Numerical calculations of the eigenvalues reveal the Lamb shift in the microcavity due to its interaction with the environment. We also investigate relations between the Lamb shift and quantized angular momentum of the whispering gallery mode as well as the refractive index of the microcavity. For the latter, we make use of the similarity between the Helmholtz equation and the Schrödinger equation, in which the refractive index can be treated as a control parameter of effective potential. Our result can be generalized to other open quantum systems with a potential term.
We generalize the control power of a perfect controlled teleportation of an entangled three-qubit pure state, suggested by Li and Ghose [Phys. Rev. A 90, 052305 (2014)], to the control power of a general controlled teleportation of a multiqubit pure state. Thus, we define the minimal control power, and calculate the values of the minimal control power for a class of general three-qubit Greenberger-Horne-Zeilinger (GHZ) states and the three-qubit W class whose states have zero threetangles. Moreover, we show that the standard three-qubit GHZ state and the standard three-qubit W state have the maximal values of the minimal control power for the two classes, respectively. This means that the minimal control power can be interpreted as not only an operational quantity of a three-qubit quantum communication but also a degree of three-qubit entanglement. In addition, we calculate the values of the minimal control power for general n-qubit GHZ states and the n-qubit W -type states.
The relation between Shannon entropy and avoided crossings is investigated in dielectric microcavities. The Shannon entropy of the probability density for eigenfunctions in an open elliptic billiard as well as a closed quadrupole billiard increases as the center of the avoided crossing is approached. These results are opposite to those of atomic physics for electrons. It is found that the collective Lamb shift of the open quantum system and the symmetry breaking in the closed chaotic quantum system have equivalent effects on the Shannon entropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.