Cyprus Island is located in a high-risk zone, in which the buildings should have lateral load-resistance systems to resist the lateral imposed loads. Bracings play a vital role in the structural behavior of buildings during an earthquake. There are many bracing systems that can be found thorough searching in the literature. However, there are insufficient studies regarding the inverted-V bracing system in accordance with the Northern Cyprus seismic code of NCSC-2015. In this study, the seismic performance of steel structures equipped with various types of inverted-V bracing systems is investigated for mid-rise and high-rise buildings in accordance with NCSC-2015 code. Several steel structure buildings having different lateral load-resistance systems are analyzed under different loading patterns applying ETABS2016 software. For this purpose, linear static equivalent lateral force method (ELFM), nonlinear static (Pushover) and nonlinear dynamic time-history (TH) analyses were adopted. The obtained results in this research indicate that the inverted-V bracing systems dramatically enhance the performance of the steel structures more particularly when the earthquake is applied perpendicular to the weak axis of the columns. This indicates that the inverted-V bracing system is an effective solution to resist the applied lateral loads while maintaining the functionality of the building. By applying the regression analysis some practical equations were submitted for the stiffness factor to be employed in similar cases as a guideline
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.