Background Adipokines in serum derive mainly from subcutaneous and visceral adipose tissues. Epicardial adipose tissue (EAT), being a relatively small but unique fat depot, probably does not make an important contribution to systemic concentrations of adipokines. However, proximity of EAT to cardiac muscle and coronary arteries allows cells and proteins to penetrate between tissues. It is hypothesized that overexpression of proinflammatory cytokines in EAT plays an important role in pathophysiology of the heart. The aim of the study was to analyze the relationship between echocardiographic heart parameters and adipokines in plasma, epicardial, and subcutaneous fat in patients with obesity and type 2 diabetes mellitus (T2DM). Additionally, we evaluate proinflammatory properties of EAT by comparing that depot with subcutaneous adipose tissue. Methods The study included 55 male individuals diagnosed with coronary artery disease (CAD) who underwent planned coronary artery bypass graft. Plasma concentrations of leptin, adiponectin, resistin, visfatin, apelin, IL-6, and TNF-α, as well as their mRNA and protein expressions in EAT and subcutaneous adipose tissue (SAT) were determined. Results Obesity and diabetes were associated with increased leptin and decreased adiponectin plasma levels, higher protein expression of leptin and IL-6 in SAT, and higher visfatin protein expression in EAT. Impaired left ventricular (LV) diastolic function was associated with increased plasma concentrations of leptin, resistin, IL-6, and adiponectin, as well as with increased expressions of resistin, apelin, and adiponectin in SAT, and leptin in EAT. Conclusions Obesity and T2DM in individuals with CAD have a limited effect on adipokines. Expression of adipokines in EAT and SAT is linked to certain heart parameters, however diastolic dysfunction of the LV is strongly associated with circulating adipokines.
This prospective multicenter cohort study aimed to analyze the epidemiological and clinical characteristics of coronavirus disease 2019 (COVID-19) in children. The study, based on the pediatric part of the Polish SARSTer register, included 1283 children (0 to 18 years) who were diagnosed with COVID-19 between 1 March 2020 and 31 December 2020. Household contact was reported in 56% of cases, more frequently in younger children. Fever was the most common symptom (46%). The youngest children (0–5 years) more frequently presented with fever, rhinitis and diarrhea. Teenagers more often complained of headache, sore throat, anosmia/ageusia and weakness. One fifth of patients were reported to be asymptomatic. Pneumonia was diagnosed in 12% of patients, more frequently in younger children. During the second wave patients were younger than during the first wave (median age 53 vs. 102 months, p < 0.0001) and required longer hospitalization (p < 0.0001). Significantly fewer asymptomatic patients were noted and pneumonia as well as gastrointestinal symptoms were more common. The epidemiological characteristics of pediatric patients and the clinical presentation of COVID-19 are age-related. Younger children were more frequently infected by close relatives, more often suffered from pneumonia and gastrointestinal symptoms and required hospitalization. Clinical courses differed significantly during the first two waves of the pandemic.
The cold season is usually accompanied by an increased incidence of respiratory infections and increased air pollution from combustion sources. As we are facing growing numbers of COVID-19 cases caused by the novel SARS-CoV-2 coronavirus, an understanding of the impact of air pollutants and meteorological variables on the incidence of respiratory infections is crucial. The incidence of influenza-like illness (ILI) can be used as a close proxy for the circulation of influenza viruses. Recently, SARS-CoV-2 has also been detected in patients with ILI. Using distributed lag nonlinear models, we analyzed the association between ILI, meteorological variables and particulate matter concentration in Bialystok, Poland, from 2013–2019. We found an exponential relationship between cumulative PM2.5 pollution and the incidence of ILI, which remained significant after adjusting for air temperatures and a long-term trend. Pollution had the greatest effect during the same week, but the risk of ILI was increased for the four following weeks. The risk of ILI was also increased by low air temperatures, low absolute humidity, and high wind speed. Altogether, our results show that all measures implemented to decrease PM2.5 concentrations would be beneficial to reduce the transmission of SARS-CoV-2 and other respiratory infections.
Toxocariasis is a worldwide distributed zoonotic disease. Soil contaminated with Toxocara eggs appears to be the main source of infection for humans. The aim of our study was to estimate the environmental contamination with Toxocara eggs in public areas in northeastern Poland followed by the assessment of seroprevalence of toxocariasis in the children's population inhabiting the areas. A total of 168 soil samples were collected in June and September from public areas, and 28 from patients' residences. They were all examined for Toxocara eggs using the centrifugal flotation technique. Two-step serological tests comprising enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) were performed in 190 children aged 2-17 without any symptoms of toxocariasis. The positive samples accounted for 36 and 32 % in the urban area, 39 and 18 % in the suburbs, and 39 and 46 % in parks, for June and September, respectively. All the sites located near the patients' residences with confirmed persistent toxocariasis were found contaminated with Toxocara eggs. A significant drop in the mean number of eggs was noted in the suburbs after summer (0.64 vs 0.18, p < 0.05). High and constant contamination was documented in soil from urban sandboxes and parks. The overall seroprevalence in children tested for toxocariasis was 4.2 % as determined by ELISA and WB (3.0 % in preschool children and 7.7 % in school children). The current study revealed high contamination of public areas in northeastern Poland with Toxocara eggs as well as marked seroprevalence in asymptomatic children. There is an urgent need to introduce and promote preventive health measures to limit spread of toxocariasis.
Adipose tissue secretes a number of cytokines, referred to as adipokines. Intensive studies conducted over the last two decades showed that adipokines exert broad effects on cardiac metabolism and function. In addition, the available data strongly suggests that these cytokines play an important role in development of cardiovascular diseases. Epicardial adipose tissue (EAT) has special properties that distinguish it from other deposits of visceral fat. Overall, there appears to be a close functional and anatomic relationship between the EAT and the cardiac muscle. They share the same coronary blood supply, and there is no structure separating the adipose tissue from the myocardium or coronary arteries. The role of EAT in osierdziocardiac physiology remains unclear. Its putative functions include buffering coronary arteries against the torsion induced by the arterial pulse wave and cardiac contraction, regulating fatty acid homeostasis in the coronary microcirculation, thermogenesis, and neuroprotection of the cardiac autonomic ganglia and nerves. Obesity (particularly the abdominal phenotype) leads to elevated EAT content, and the available data suggests that high amount of this fat depot is associated with increased risk of ischemic heart disease, cardiac hypertrophy and diastolic dysfunction. The mass of EAT is small compared to other fat deposits in the body. Nevertheless, its close anatomic relationship to the heart suggests that this organ is highly exposed to EAT-derived adipokines which makes this tissue a very promising area of research. In this paper we review the current knowledge on the role of EAT in cardiac physiology and development of heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.