International audienceThe ability of microbes to metabolize arsenic may have emerged more than 3.4 billion years ago1, 2. Some of the modern environments in which prominent arsenic metabolism occurs are anoxic3, 4, as were the Precambrian oceans. Early oceans may also have had a relatively high abundance of arsenic5. However, it is unclear whether arsenic cycling occurred in ancient environments. Here we assess the chemistry and nature of cell-like globules identified in salt-encrusted portions of 2.72-billion-year-old fossil stromatolites from Western Australia. We use Raman spectroscopy and X-ray fluorescence to show that the globules are composed of organic carbon and arsenic (As). We argue that our data are best explained by the occurrence of a complete arsenic cycle at this site, with As(III) oxidation and As(V) reduction by microbes living in permanently anoxic conditions. We therefore suggest that arsenic cycling could have occurred more widely in marine environments in the several hundred million years before the Earth’s atmosphere and shallow oceans were oxygenated
XPAD3S is a single-photon-counting chip developed in collaboration by SOLEIL Synchrotron, the Institut Louis Néel and the Centre de Physique de Particules de Marseille. The circuit, designed in the 0.25 microm IBM technology, contains 9600 square pixels with 130 microm side giving a total size of 1 cm x 1.5 cm. The main features of each pixel are: single threshold adjustable from 4.5 keV up to 35 keV, 2 ms frame rate, 10(7) photons s(-1) mm(-2) maximum local count rate, and a 12-bit internal counter with overflow allowing a full 27-bit dynamic range to be reached. The XPAD3S was hybridized using the flip-chip technology with both a 500 microm silicon sensor and a 700 microm CdTe sensor with Schottky contacts. Imaging performances of both detectors were evaluated using X-rays from 6 keV up to 35 keV. The detective quantum efficiency at zero line-pairs mm(-1) for a silicon sensor follows the absorption law whereas for CdTe a strong deficit at low photon energy, produced by an inefficient entrance layer, is measured. The modulation transfer function was evaluated and it was shown that both detectors present an ideal modulation transfer function at 26 keV, limited only by the pixel size. The influence of the Cd and Te K-edges of the CdTe sensor was measured and simulated, establishing that fluorescence photons reduce the contrast transfer at the Nyquist frequency from 60% to 40% which remains acceptable. The energy resolution was evaluated at 6% with silicon using 16 keV X-rays, and 8% with CdTe using 35 keV X-rays. A 7 cm x 12 cm XPAD3 imager, built with eight silicon modules (seven circuits per module) tiled together, was successfully used for X-ray diffraction experiments. A first result recently obtained with a new 2 cm x 3 cm CdTe imager is also presented.
The Nanoscopium 155 m-long beamline of Synchrotron Soleil is dedicated to scanning hard X-ray nanoprobe techniques. Nanoscopium aims to reach 100 nm resolution in the 5-20 keV energy range for routine user experiments. The beamline design tackles the tight stability requirements of such a scanning nanoprobe by creating an overfilled secondary source, implementing all horizontally reflecting main beamline optics, applying high mechanical stability equipment and constructing a dedicated high-stability building envelope. Multitechnique scanning imaging and tomography including X-ray fluorescence spectrometry and spectro-microscopy, absorption, differential phase and darkfield contrasts are implemented at the beamline in order to provide simultaneous information on the elemental distribution, speciation and sample morphology. This paper describes the optical concept and the first measured performance of the Nanoscopium beamline followed by the hierarchical lengthscale multi-technique imaging experiments performed with dwell times down to 3 ms per pixel.
The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record.
The study of Mn-based superoxide dismutase mimic conjugated with a multimodal Re-probe in a cellular model of oxidative stress revealed that its bioactivity is associated with its accumulation at the mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.