Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
The present work is an experimental comparison between the friction stir welding (FSW) and the conventional gas metal arc welding (GMAW) in joining of Al alloys. Two sets of 3 mm thick aluminum strip pairs were friction stir welded in a regular butting joint configuration. Two rotational speeds of 1750 rpm and 2720 rpm were utilized to perform the FSW process. The axial force and the transverse speed were kept constant at 6.5 KN and 45 mm/min, respectively. Cylindrical tool shoulder and pin geometry were selected. Strip pairs of other similar sets were butt jointed using the conventional GMAW. The welding quality, power input, and macrostructure and microstructure of the butted joints were examined. The types of the fumes and the amount of the released gases were measured and compared. The results showed that the solid state FSW is green, environment-friendly, and of superior welding properties compared to the conventional GMAW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.