Background Continued use of mHealth apps can achieve better effects in health management. Gamification is an important factor in promoting users’ intention to continue using mHealth apps. Past research has rarely explored the factors underlying the continued use of mobile health (mHealth) apps and gamification’s impact mechanism or path on continued use. Objective This study aimed to explore the factors influencing mHealth app users’ intention to continue using mHealth apps and the impact mechanism and path of users’ feelings induced by gamification on continued mHealth app use. Methods First, based on the expectation confirmation model of information system continuance, we built a theoretical model for continued use of mHealth apps based on users’ feelings toward gamification. We used self-determination theory to analyze gamification’s impact on user perceptions and set the resulting feelings (competence, autonomy, and relatedness) as constructs in the model. Second, we used the survey method to validate the research model, and we used partial least squares to analyze the data. Results A total of 2988 responses were collected from mHealth app users, and 307 responses were included in the structural equation model after passing the acceptance criteria. The intrinsic motivation for using mHealth apps is significantly affected by autonomy (β=.312; P<.001), competence (β=.346; P<.001), and relatedness (β=.165; P=.004) induced by gamification. The intrinsic motivation for using mHealth apps has a significant impact on satisfaction (β=.311, P<.001) and continuance intention (β=.142; P=.045); furthermore, satisfaction impacts continuance intention significantly (β=.415; P<.001). Confirmation has a significant impact on perceived usefulness (β=.859; P<.001) and satisfaction (β=.391; P<.001), and perceived usefulness has a significant impact on satisfaction (β=.269; P<.001) and continuance intention (β=.273; P=.001). The mediating effect analysis showed that in the impact path of the intrinsic motivation for using the mHealth apps on continuance intention, satisfaction plays a partial mediating role (β=.129; P<.001), with a variance accounted for of 0.466. Conclusions This study explored the impact path of users’ feelings induced by gamification on the intention of continued mHealth app use. We confirmed that perceived usefulness, confirmation, and satisfaction in the classical continued use theory for nonmedical information systems positively affect continuance intention. We also found that the path and mechanism of users' feelings regarding autonomy, competence, and relatedness generated during interactions with different gamification elements promote the continued use of mHealth apps.
IMPORTANCEThe effectiveness of mobile health (mHealth) apps for reducing obesity is not ideal in daily life. Therefore, it would be useful to explore factors associated with user satisfaction with weight loss apps. Currently, research on these factors from the perspective of user-generated content is lacking. OBJECTIVE To mine the themes and topics frequently discussed in user-generated content in mHealth apps for weight loss, explore correlations of the topics with user satisfaction and dissatisfaction, and assess whether these correlations were asymmetric. DESIGN, SETTING, AND PARTICIPANTSIn this population-based cross-sectional study, unsupervised machine learning was used to identify themes and topics in online discussions generated between January 1, 2019, and May 20, 2021, by Chinese users of mHealth apps for weight loss. MAIN OUTCOMES AND MEASURESBased on the 2-factor theory, a tobit regression model was used to explore the correlation of various app discussion topics with user satisfaction and dissatisfaction. Differences of the coefficients in models of positive rating deviation (PD) and negative rating deviation (ND), defined as the difference between the users' rating of the app and the app's comprehensive rating in the app stores, were analyzed by the Wald test. RESULTSIn total, 191 619 reviews and ratings from unique usernames were collected for 2139 weight loss apps; 86 423 reviews (45.1%) from 339 apps (15.8%) were included in the study. Most users (65 249 [75.5%]) were satisfied with the mHealth app. Eighteen topics were identified and summarized into 9 themes. Nine topics had significant positive correlations with the PD of user satisfaction, and 6 had significant negative correlations. The factor with the strongest positive correlation with the PD was celebrity effect (β = 0.307; 95% CI, 0.290-0.323), and the factor with the weakest correlation was economic cost (β = −0.426; 95% CI, −0.447 to −0.406). Nine topics had significant positive correlations with the ND of user satisfaction, whereas 7 topics had significant negative correlations. The factor with the strongest positive correlation with the ND was fitness effect (β = 1.369; 95% CI, 1.283-1.455), and the factor with the strongest negative correlation was economic cost (β = −2.813; 95% CI, −2.875 to −2.751). There were significant differences in the PD and ND of user satisfaction. Nine motivation factors (ie, value-added attributes) and 7 hygiene factors (ie, user-expected attributes) for mHealth apps were identified. CONCLUSIONS AND RELEVANCEIn this cross-sectional study, 16 factors had asymmetric correlations with user satisfaction and dissatisfaction with weight loss apps; 7 were related to basic expected attributes of the apps and 9 to value-added attributes. By distinguishing between expected and value-added factors, the use of weight loss apps may be improved.
Background The China Hospital Information Network Conference (CHINC) is one of the most influential academic and technical exchange activities in medical informatics and medical informatization in China. It collects frontier ideas in medical information and has an important reference value for the analysis of China's medical information industry development. Objective This study summarizes the current situation and future development of China's medical information industry and provides a future reference for China and abroad in the future by analyzing the characteristics of CHINC exhibitors in 2021. Methods The list of enterprises and participating keywords were obtained from the official website of CHINC. Basic characteristics of the enterprises, industrial fields, applied technologies, company concepts, and other information were collected from the TianYanCha website and the VBDATA company library. Descriptive analysis was used to analyze the collected data, and we summarized the future development directions. Results A total of 205 enterprises officially participated in the exhibition. Most of the enterprises were newly founded, of which 61.9% (127/205) were founded in the past 10 years. The majority of these enterprises were from first-tier cities, and 79.02% (162/205) were from Beijing, Zhejiang, Guangdong, Shanghai, and Jiangsu Provinces. The median registered capital is 16.67 million RMB (about US $2.61 million), and there are 35 (72.2%) enterprises with a registered capital of more than 100 million RMB (about US $15.68 million), 17 (8.3%) of which are already listed. A total of 126 enterprises were found in the VBDATA company library, of which 39 (30.9%) are information technology vendors and 57 (45.2%) are application technology vendors. In addition, 16 of the 57 (28%) use artificial intelligence technology. Smart medicine and internet hospitals were the focus of the enterprises participating in this conference. Conclusions China's tertiary hospital informatization has basically completed the construction of the primary stage. The average grade of hospital electronic medical records exceeds grade 3, and 78.13% of the provinces have reached grade 3 or above. The characteristics are as follows: On the one hand, China's medical information industry is focusing on the construction of smart hospitals, including intelligent systems supporting doctors' scientific research, diagnosis-related group intelligent operation systems, and office automation systems supporting hospital management, single-disease clinical decision support systems assisting doctors' clinical care, and intelligent internet of things for logistics. On the other hand, the construction of a compact county medical community is becoming a new focus of enterprises under the guidance of practical needs and national policies to improve the quality of grassroots health services. In addition, whole-course management and digital therapy will also become a new hotspot in the future.
BACKGROUND The China Hospital Information Network Conference (CHINC) is one of the most influential academic and technical exchange activities in medical informatics and medical informatization in China. It collects frontier ideas in medical information and has an important reference value for the analysis of China's medical information industry development. OBJECTIVE This study summarizes the current situation and future development of China's medical information industry and provides a future reference for China and abroad in the future by analyzing the characteristics of CHINC exhibitors in 2021. METHODS The list of enterprises and participating keywords were obtained from the official website of CHINC. Basic characteristics of the enterprises, industrial fields, applied technologies, company concepts, and other information were collected from the TianYanCha website and the VBDATA company library. Descriptive analysis was used to analyze the collected data, and we summarized the future development directions. RESULTS A total of 205 enterprises officially participated in the exhibition. Most of the enterprises were newly founded, of which 61.9% (127/205) were founded in the past 10 years. The majority of these enterprises were from first-tier cities, and 79.02% (162/205) were from Beijing, Zhejiang, Guangdong, Shanghai, and Jiangsu Provinces. The median registered capital is 16.67 million RMB (about US $2.61 million), and there are 35 (72.2%) enterprises with a registered capital of more than 100 million RMB (about US $15.68 million), 17 (8.3%) of which are already listed. A total of 126 enterprises were found in the VBDATA company library, of which 39 (30.9%) are information technology vendors and 57 (45.2%) are application technology vendors. In addition, 16 of the 57 (28%) use artificial intelligence technology. Smart medicine and internet hospitals were the focus of the enterprises participating in this conference. CONCLUSIONS China's tertiary hospital informatization has basically completed the construction of the primary stage. The average grade of hospital electronic medical records exceeds grade 3, and 78.13% of the provinces have reached grade 3 or above. The characteristics are as follows: On the one hand, China's medical information industry is focusing on the construction of smart hospitals, including intelligent systems supporting doctors' scientific research, diagnosis-related group intelligent operation systems, and office automation systems supporting hospital management, single-disease clinical decision support systems assisting doctors' clinical care, and intelligent internet of things for logistics. On the other hand, the construction of a compact county medical community is becoming a new focus of enterprises under the guidance of practical needs and national policies to improve the quality of grassroots health services. In addition, whole-course management and digital therapy will also become a new hotspot in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.