Crh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.
Plasmodiophora brassicae causes clubroot disease in cruciferous. In this report, lipid droplets were observed in the resting spores of P. brassicae. 295 lipid droplet-associated proteins were identified and categorized into nine groups. Transcriptome analysis of these proteins during three different zoosporic stages revealed differences in gene expression pattern. GO enrichment analysis revealed that these proteins associated with lipid droplets were mainly linked to biosynthesis and metabolism. GC-MS analysis revealed that lipid droplets contain seven types of free fatty acids: saturated fatty acids C16:0 and C18:0, and unsaturated fatty acids C18:1Δ9, C18:1Δ11, C18:2, C20:4 and C20:5. P. brassicae accumulated a large amount of triacylglycerols (TAGs). We systematically analyzed the putative proteins involved in TAG biosynthesis and its metabolic pathway. KEGG pathway analysis defined 3390 genes, including 167 genes involved in lipid metabolism. Transcriptome analysis revealed that 162 candidate enzymes involved in lipid metabolism were differential expressed. Our omics studies are the first to investigate the lipid droplet organelles in P. brassicae, providing a reference resource to study protist lipid droplets.
Clubroot disease is a serious threat to cruciferous plants worldwide, especially to oilseed rape. However, knowledge on pathogenic molecular mechanisms and host interaction is limited. We presume that the recognition between Arabidopsis thaliana and Plasmodiophora brassicae occurs at the early stage of infection and within a relatively short period. In this study, we demonstrated changes on gene expression and pathways in A. thaliana during early infection with P. brassicae using transcriptome analysis. We identified 1,903 and 1,359 DEGs at 24 and 48 h post-inoculation (hpi), respectively. Flavonoids and the lignin synthesis pathways were enhanced, glucosinolates, terpenoids, and proanthocyanidins accumulated and many hormonal- and receptor-kinase related genes were expressed, caused by P. brassicae infection during its early phase. Therefore, the early interaction between A. thaliana and P. brassicae plays an important role in the entire infection process. The results provide a new contribution to a better understanding of the interaction between host plants and P. brassicae, as well as the development of future measures for the prevention of clubroot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.