A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 -2003) TOPEX/POSEIDON satellite altimetry and long-term (> 40 years) relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004) in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA) in the region since the Last Glacial Maximum (LGM). The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co-and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr -1
Climate change and the extreme weather have a negative impact on road traffic safety, resulting in severe road traffic accidents. In this study, a negative binomial model and a log-change model are proposed to analyse the impact of various factors on fatal traffic accidents. The dataset used in this study includes the fatal traffic accident frequency, social development indicators and climate indicators in California and Arizona. The results show that both models can provide accurate fitting results. Climate variables (i.e., average temperature and standard precipitation 24) can significantly affect the frequency of fatal traffic accidents. Non-climate variables (i.e., beer consumption, rural Vehicle miles travelled ratio, and vehicle performance) also have a significant impact. The modelling results can provide decision-making guidelines for the transportation management agencies to improve road traffic safety.
Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by
Bacillus subtilis
under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (
R
ext
) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of
B. subtilis
on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm
2
was achieved at an
R
ext
of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.