Soil microorganisms play an indispensable role in the forest ecosystem. It is necessary to study the soil microorganisms in Pinus sylvestris var. mongolica, which is one of the afforestation species widely planted in the northern sandy region of China. We collected soil samples of P. sylvestris at large spatial scales and analyzed bacterial and fungal community composition differences using high-throughput sequencing techniques. The results showed that: (1) the richness index of different sandy lands was significantly different. The α-diversity of bacteria was the highest in Mu Us Sandy Land, and the α-diversity of fungi was the highest in Horqin Sandy Land. (2) The dominant phyla of bacteria were Actinobacteria, Proteobacteria, Chloroflexi and Acidobacteria, while the dominant phyla of fungi were Ascomycota and Basidiomycota. The relative abundance of dominant phyla was different. (3) Temperature and precipitation were the main driving factors of bacterial and fungal community change at large spatial scale. In addition, bacteria were also affected by total nitrogen, soil organic carbon and pH content; fungal community was affected by pH. The microorganisms showed obvious differences in geographical distribution, which could provide ideas for promoting sustainable management of P. sylvestris stand.
Soil fungi play an indispensable role in forest ecosystems by participating in energy flow, material circulation, and assisting plant growth and development. Larix gmelinii is the dominant tree species in the greater Khingan Mountains, which is the only cold temperate coniferous forest in China. Understanding the variations in underground fungi will help us master the situation of L. gmelinii above ground. We collected soil samples from three seasons and analyzed the differences in soil fungal community structure using high-throughput sequencing technology to study the seasonal changes in soil fungal community structure in L. gmelinii forests. We found that the Shannon and Chao1 diversity in autumn was significantly lower than in spring and summer. The community composition and functional guild varied significantly between seasons. Furthermore, we showed that ectomycorrhizal fungi dominated the functional guilds. The relative abundance of ectomycorrhizal fungi increased dramatically from summer to autumn and was significantly negatively correlated with temperature and precipitation. Temperature and precipitation positively affect the alpha diversity of fungi significantly. In addition, pH was negatively correlated with the Chao1 diversity. Temperature and precipitation significantly affected several dominant genera and functional guilds. Among the soil physicochemical properties, several dominant genera were affected by pH, and the remaining individual genera and functional guilds were significantly correlated with total nitrogen, available phosphorus, soil organic carbon, or cation exchange capacity. For the composition of total fungal community, temperature and precipitation, as well as soil physicochemical properties except AP, significantly drove the variation in community composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.