Three nonequivalent centers of Cs (A, B, and C) in monoclinic phase and C2 and S6 centers in cubic phase were identified in the Gd2O3:Eu3+ nanocrystals with spectral techniques. Size dependence in the spectra indicated that the excitations from both host and charge-transfer band (CTB) for the 5D0 --> 7F2 transition of Eu3+ ions were nearly equal for a larger size of 135 nm of the cubic phase; however, with decreasing the size to or less than 23 nm, the excitations by the CTB dominated. The variation of excitation leading to the symmetry and energy change in the C2 and S6 sites was also observed for larger particle sizes. The Judd-Ofelt intensity parameters Omega(lambda) (lambda = 2, 4) for Gd2O3:Eu3+ nanoparticles were experimentally determined. The parameters Omega(lambda) were found to significantly change with the sizes of Gd2O3:Eu3+ from nanoparticles to bulk material. With decreasing the size from 135 to 15 nm, the quantum efficiencies for 5D0 reduced from 23.6% to 4.6% due to the increasing ratio of surface to volume.
Grid radiation therapy with megavoltage x-ray beam has been proven to be an effective technique for management of large, bulky malignant tumors. The clinical advantage of GRID therapy, combined with conventional radiation therapy, has been demonstrated using a prototype GRID block [Mohiuddin, Curtis, Grizos, and Komarnicky, Cancer 66, 114-118 (1990)]. Recently, a new GRID block design with improved dosimetric properties has become commercially available from Radiation Product Design, Inc. (Albertive, MN). This GRID collimator consists of an array of focused apertures in a cerrobend block arranged in a hexagonal pattern having a circular cross-section with a diameter and center-to-center spacing of 14.3 and 21.1 mm, respectively, in the plane of isocenter. In this project, dosimetric characteristics of the newly redesigned GRID block have been investigated for a Varian 21EX linear accelerator (Varian Associates, Palo Alto, CA). These determinations were performed using radiographic films, thermoluminescent dosimeters in Solid Water phantom materials, and an ionization chamber in water. The output factor, percentage depth dose, beam profiles, and isodose distributions of the GRID radiation as a function of field size and beam energy have been measured using both 6 and 18 MV x-ray beams. In addition, the therapeutic advantage obtained from this treatment modality with the new GRID block design for a high, single fraction of dose has been calculated using the linear quadratic model with alpha/beta ratios for typical tumor and normal cells. These biological characteristics of the new GRID block design will also be presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.