The regular practice of Transcendental Meditation may have the potential to reduce systolic and diastolic blood pressure by approximately 4.7 and 3.2 mm Hg, respectively. These are clinically meaningful changes.
Three nonequivalent centers of Cs (A, B, and C) in monoclinic phase and C2 and S6 centers in cubic phase were identified in the Gd2O3:Eu3+ nanocrystals with spectral techniques. Size dependence in the spectra indicated that the excitations from both host and charge-transfer band (CTB) for the 5D0 --> 7F2 transition of Eu3+ ions were nearly equal for a larger size of 135 nm of the cubic phase; however, with decreasing the size to or less than 23 nm, the excitations by the CTB dominated. The variation of excitation leading to the symmetry and energy change in the C2 and S6 sites was also observed for larger particle sizes. The Judd-Ofelt intensity parameters Omega(lambda) (lambda = 2, 4) for Gd2O3:Eu3+ nanoparticles were experimentally determined. The parameters Omega(lambda) were found to significantly change with the sizes of Gd2O3:Eu3+ from nanoparticles to bulk material. With decreasing the size from 135 to 15 nm, the quantum efficiencies for 5D0 reduced from 23.6% to 4.6% due to the increasing ratio of surface to volume.
The previous works by our group (Chem. Commun., 2010, 46, 2304-2306; ACS Catal., 2013, 3, 405-412; Phys. Chem. Chem. Phys., 2013, 15, 14681-14688) have reported the near-infrared-driven photocatalysis of broadband semiconductor TiO2 or ZnO that was combined with upconverting luminescence particles to form a core-shell structure. However, the photocatalytic efficiency is low for this new type of photocatalysts. In this work, NaYF4:Yb,Tm/CdS/TiO2 composites for NIR photocatalysis were prepared by linking CdS and TiO2 nanocrystals on the NaYF4:Yb,Tm microcrystal surfaces. CdS and TiO2 were well interacted to form a heterojunction structure. The energy transfer between NaYF4:Yb,Tm and the semiconductors CdS and TiO2 was investigated by steady-state and dynamic fluorescence spectroscopy. The photocatalytic activities of the as-prepared composites were evaluated by the degradation of methylene blue in aqueous solution upon NIR irradiation. Significantly, it was found that the united adhesions of CdS and TiO2 on the NaYF4:Yb,Tm particle surfaces showed much higher catalytic activities than the individual adhesion of CdS or TiO2 on the NaYF4:Yb,Tm surfaces. This was attributed mainly to the effective separation of the photogenerated electron-hole pairs due to the charge transfer across the CdS-TiO2 interface driven by the band potential difference between them. The presented composite structure of upconverting luminescence materials coupled with narrow/wide semiconductor heterojunctions provides a new model for improved NIR photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.