Ultrasound Computer Tomography (USCT) medical imaging is a promising approach for early detection of breast cancer. At Karlsruhe Institute of Technology (KIT) a 3‐D USCT system is developed. The region‐of‐interest (ROI) of 10 × 10 × 10 cm3 volume is surrounded by a aperture of 2014 semi‐spherical positioned ultrasound transducers. Results from a first patient study reveals the requirement of a significantly increased ROI to cover bodily variations. Design considerations and simulations show a demand for circular transducers with a diameter of ca. 500 µm, increasing the opening angle of the transducers to ca. 60°. Piezofiber composite technology is predestinated to simply provide circular transducers of the required dimensions. Moreover, piezocomposites based on single PZT (lead zirconate titanate Pb[ZrxTi1‐x]O3) fibers enable a cost‐effective and series‐production alternative to currently used dice‐and‐fill composites. A transducer design is presented which utilizes individually arranged single piezoceramic fibers with 460 μm in diameter within piezocomposite discs. As a result, fibers are independently addressable as single transducer elements allowing for the desired transducer arrangement. The electrical performance of each piezoceramic fiber is determined proofing a strong dependence both of the coupling coefficient and the resonance frequency from the transducer thickness. In further processing, the piezocomposite discs are connected to printed circuits, integrated into a cylindrical housing, and backfilled with polyurethane. Ultrasound characteristics such as sound pressure and opening angle are evaluated quantitatively. The results show that the transducer opening angles lie in the expected range, that the desired center frequency is achieved and that the bandwidth could be preserved compared to former dice‐and‐fill transducers.
The present paper deals with the development of lead zirconate titanate (PZT) fibres, pearls and fibre fragments, for their use as active phase in piezocomposites. As new a approach, the green ceramic components are shaped by polysulphone spinning, allowing for effective and flexible forming over a wide range of different geometries and sizes.1 The correlation between processing parameters, e.g. the slurry composition, nozzle size and operation velocity, and the resultant shape of ceramic components is analysed. Sintered piezoceramic parts show a dense microstructure. Performance data are evaluated on PZT/epoxy composites. Measurement results of strain, polarisation and piezoelectric coupling are given and discussed. The developed PZT components are seen as key for the creation of smart and lightweight structural components. Further, free formed PZT components open new design approaches for sensing and actuating devices and ultrasound transducers
Structural devices with integrated adaptive functions are demanded in lightweight engineering especially in automotive and aerospace industries and mechanical engineering. As base of such systems, piezocomposites are of high interest. They can be made from piezoceramic components, e.g. plates, fibers, or more complex three-dimensional structures, integrated into matrix materials. We developed the polysulfone spinning process as an appropriate technique to produce dense piezoceramic components with different shapes. The paper reports on fabrication and properties of PZT fibers, fiber fragments and spherical samples (pearls). Potential applications of customized PZT components for smart structures and ultrasonic transducers are shown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.