Recent studies have identified broadband phenomena in the electric potentials produced by the brain. We report the finding of power-law scaling in these signals using subdural electrocorticographic recordings from the surface of human cortex. The power spectral density (PSD) of the electric potential has the power-law form from 80 to 500 Hz. This scaling index, , is conserved across subjects, area in the cortex, and local neural activity levels. The shape of the PSD does not change with increases in local cortical activity, but the amplitude, , increases. We observe a “knee” in the spectra at , implying the existence of a characteristic time scale . Below , we explore two-power-law forms of the PSD, and demonstrate that there are activity-related fluctuations in the amplitude of a power-law process lying beneath the rhythms. Finally, we illustrate through simulation how, small-scale, simplified neuronal models could lead to these power-law observations. This suggests a new paradigm of non-oscillatory “asynchronous,” scale-free, changes in cortical potentials, corresponding to changes in mean population-averaged firing rate, to complement the prevalent “synchronous” rhythm-based paradigm.
In the first large study of its kind, we quantified changes in electrocorticographic signals associated with motor movement across 22 subjects with subdural electrode arrays placed for identification of seizure foci. Patients underwent a 5-7 d monitoring period with array placement, before seizure focus resection, and during this time they participated in the study. An interval-based motor-repetition task produced consistent and quantifiable spectral shifts that were mapped on a Talairach-standardized template cortex. Maps were created independently for a high-frequency band (HFB) (76 -100 Hz) and a low-frequency band (LFB) (8 -32 Hz) for several different movement modalities in each subject. The power in relevant electrodes consistently decreased in the LFB with movement, whereas the power in the HFB consistently increased. In addition, the HFB changes were more focal than the LFB changes. Sites of power changes corresponded to stereotactic locations in sensorimotor cortex and to the results of individual clinical electrical cortical mapping. Sensorimotor representation was found to be somatotopic, localized in stereotactic space to rolandic cortex, and typically followed the classic homunculus with limited extrarolandic representation.
Signals from the brain could provide a non-muscular communication and control system, a brain-computer interface (BCI), for people who are severely paralyzed. A common BCI research strategy begins by decoding kinematic parameters from brain signals recorded during actual arm movement. It has been assumed that these parameters can be derived accurately only from signals recorded by intracortical microelectrodes, but the long-term stability of such electrodes is uncertain. The present study disproves this widespread assumption by showing in humans that kinematic parameters can also be decoded from signals recorded by subdural electrodes on the cortical surface (ECoG) with an accuracy comparable to that achieved in monkey studies using intracortical microelectrodes. A new ECoG feature labeled the local motor potential (LMP) provided the most information about movement. Furthermore, features displayed cosine tuning that has previously been described only for signals recorded within the brain. These results suggest that ECoG could be a more stable and less invasive alternative to intracortical electrodes for BCI systems, and could also prove useful in studies of motor function.
The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high quality neuroscientific data for open access to the scientific community. As experienced already in prior competitions not only scientists from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include high specialists as well as students. The goals of all BCI competitions have always been to challenge with respect to novel paradigms and complex data. We report on the following challenges: (1) asynchronous data, (2) synthetic, (3) multi-class continuous data, (4) session-to-session transfer, (5) directionally modulated MEG, (6) finger movements recorded by ECoG. As after past competitions, our hope is that winning entries may enhance the analysis methods of future BCIs.
An important mechanism for large-scale interactions between cortical areas involves coupling between the phase and the amplitude of different brain rhythms. Could basal ganglia disease disrupt this mechanism? We answered this question by analysis of local field potentials recorded from the primary motor cortex (M1) arm area in patients undergoing neurosurgery. In Parkinson disease, coupling between β-phase (13-30 Hz) and γ-amplitude (50-200 Hz) in M1 is exaggerated compared with patients with craniocervical dystonia and humans without a movement disorder. Excessive coupling may be reduced by therapeutic subthalamic nucleus stimulation. Peaks in M1 γ-amplitude are coupled to, and precede, the subthalamic nucleus β-trough. The results prompt a model of the basal ganglia-cortical circuit in Parkinson disease incorporating phase-amplitude interactions and abnormal corticosubthalamic feedback and suggest that M1 local field potentials could be used as a control signal for automated programming of basal ganglia stimulators.electrocorticography | cross-frequency coupling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.