Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.
Plasmodium parasite-specific antibodies are critical for protection against malaria, yet the development of long-lived and effective humoral immunity against Plasmodium takes many years and multiple rounds of infection and cure. Here we report that the rapid development of short-lived plasmablasts during experimental malaria unexpectedly hindered parasite control by impeding germinal center (GC) responses. Metabolic hyperactivity of plasmablasts resulted in nutrient deprivation of the GC reaction limiting the generation of memory B cell and long-lived plasma cell responses. Therapeutic administration of a single amino acid to experimentally infected mice was sufficient to overcome the metabolic constraints imposed by plasmablasts and enhanced parasite clearance and the formation of protective humoral immune memory responses. Thus, our studies not only challenge the current paradigm describing the role and function of blood-stage Plasmodium -induced plasmablasts, but also reveal new targets and strategies to improve anti- Plasmodium humoral immunity.
Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor α-dystroglycan (αDG). However, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrated that the phosphatidylserine (PtdSer)-binding receptors Axl and Tyro3 along with C-type lectin receptors mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP)-pseudotyped virion entry into αDG-knocked-out HEK 293T and wild-type (WT) Vero cells, which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Furthermore, the human TIM-1 IgV domain-binding monoclonal antibody ARD5 blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline-rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates the entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer-binding pocket of TIM-1. PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through the binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate the entry of all enveloped viruses, yet LASV GP-pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here, we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1 but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high-affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why previous studies performed with α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake.
Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.
Background T cell immunoglobulin mucin domain-1 (TIM-1) is a phosphatidylserine (PS) receptor, mediating filovirus entry into cells through interactions with PS on virions. TIM-1 expression has been implicated in Ebola virus (EBOV) pathogenesis; however, it remains unclear whether this is due to TIM-1 serving as a filovirus receptor in vivo or, as others have suggested, TIM-1 induces a cytokine storm elicited by T cell/virion interactions. Here, we use a BSL2 model virus that expresses EBOV glycoprotein to demonstrate the importance of TIM-1 as a virus receptor late during in vivo infection. Methodology/Principal findings Infectious, GFP-expressing recombinant vesicular stomatitis virus encoding either full length EBOV glycoprotein (EBOV GP/rVSV) or mucin domain deleted EBOV glycoprotein (EBOV GPΔO/rVSV) was used to assess the role of TIM-1 during in vivo infection. GFP-expressing rVSV encoding its native glycoprotein G (G/rVSV) served as a control. TIM-1-sufficient or TIM-1-deficient BALB/c interferon α/β receptor -/- mice were challenged with these viruses. While G/rVSV caused profound morbidity and mortality in both mouse strains, TIM-1-deficient mice had significantly better survival than TIM-1-expressing mice following EBOV GP/rVSV or EBOV GPΔO/rVSV challenge. EBOV GP/rVSV or EBOV GPΔO/rVSV in spleen of infected animals was high and unaffected by expression of TIM-1. However, infectious virus in serum, liver, kidney and adrenal gland was reduced late in infection in the TIM-1-deficient mice, suggesting that virus entry via this receptor contributes to virus load. Consistent with higher virus loads, proinflammatory chemokines trended higher in organs from infected TIM-1-sufficient mice compared to the TIM-1-deficient mice, but proinflammatory cytokines were more modestly affected. To assess the role of T cells in EBOV GP/rVSV pathogenesis, T cells were depleted in TIM-1-sufficient and -deficient mice and the mice were challenged with virus. Depletion of T cells did not alter the pathogenic consequences of virus infection. Conclusions Our studies provide evidence that at late times during EBOV GP/rVSV infection, TIM-1 increased virus load and associated mortality, consistent with an important role of this receptor in virus entry. This work suggests that inhibitors which block TIM-1/virus interaction may serve as effective antivirals, reducing virus load at late times during EBOV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.