Dust comprises particles usually present in the atmosphere. The deposition of dust on the surface of the solar panel seriously affects the light transmittance, resulting in lower pow-er generation efficiency and shortening the service life of the solar panel. Therefore, it is important to understand the dust distribution on the surface of solar panels and discuss the influence of dust on the power generation efficiency of solar panels for the efficient prevention of dust deposition on the panel. In this study, to analyze the dust distribution on the surface of the solar panel, the discrete element method was used to establish the contact mechanics model between dust particles and the solar panel. The number of dust particles on the surface of solar panels was calculated at different solar panel inclination angles, wind speeds, and wind directions. The wind speed of 1 and 3 m/s did not affect the dust deposition significantly but the speed over 5 m/s reduced the dust particles from the surface of the solar panel. The inclination angle of 23° influenced dust deposition on the surface of the solar panel. Wind direction did not show a significant effect on dust deposition. The longer the deposition time, the more particles remained on the surface due to the increased force between the particles and the surface of the solar panel. The results from calculation and measurement from transmittance were similar with a different rate of 3.41%. Thus, the result of the proposed calculation in this study provides a basis for de-signing the solar power generation plant and decision-making on the maintenance of the solar panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.