A rare Ru-catalyzed highly selective synthesis of 3,4-dihydroisoquinolines or isoquinolines is accomplished via a redox-divergent hydrogen-retentive or hydrogen-releasing fashion. Notably, high cis-selectivity of 3,4-dihydroisoquinolines is achieved. Potential applications are shown by gram-scale reactions and very concise synthesis of N-containing polycyclic aromatic compounds. Primary mechanistic investigations indicate that the sequence of the major pathway involves Ru-catalyzed C-H activation, alkyne insertion, and subsequent 6π-electrocyclization.
Exploring of hydrogen source from renewable biomass, such as glucose in alkaline solution, for hydrogenation reactions had been studied since 1860s. According to proposed pathway, only small part of hydrogen source in glucose was utilized. Herein, the utilization of a hydrogen source from renewable lignocellulosic biomass, one of the most abundant renewable sources in nature, for a hydrogenation reaction is described. The hydrogenation is demonstrated by reduction of nitroarenes to arylamines in up to 95 % yields. Mechanism studies suggest that the hydrogenation occurs via a hydrogen transformation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.