Diseases and pests are essential threat factors that affect agricultural production, food security supply, and ecological plant diversity. However, the accurate recognition of various diseases and pests is still challenging for existing advanced information and intelligence technologies. Disease and pest recognition is typically a fine-grained visual classification problem, which is easy to confuse the traditional coarse-grained methods due to the external similarity between different categories and the significant differences among each subsample of the same category. Toward this end, this paper proposes an effective graph-related high-order network with feature aggregation enhancement (GHA-Net) to handle the fine-grained image recognition of plant pests and diseases. In our approach, an improved CSP-stage backbone network is first formed to offer massive channel-shuffled features in multiple granularities. Secondly, relying on the multilevel attention mechanism, the feature aggregation enhancement module is designed to exploit distinguishable fine-grained features representing different discriminating parts. Meanwhile, the graphic convolution module is constructed to analyse the graph-correlated representation of part-specific interrelationships by regularizing semantic features into the high-order tensor space. With the collaborative learning of three modules, our approach can grasp the robust contextual details of diseases and pests for better fine-grained identification. Extensive experiments on several public fine-grained disease and pest datasets demonstrate that the proposed GHA-Net achieves better performances in accuracy and efficiency surpassing several other existing models and is more suitable for fine-grained identification applications in complex scenes.
The substation process level networks modeling based on OPNET provides the solution for the quantitative assessment of process level networks. To meet the demand in substation automation system application, it analyzes the modeling requirements of entity equipment, IEC 61850 standard and optimization strategies. From the prospective of OPNET operating system, model library and user-defined modeling methods it researches the adaptation of OPNET and process level networks modeling, and it analyzes the substation process level network modeling based on OPNET with the demonstrations of SV/GOOSE, merging unit and protection IED, VALN modeling, providing the solution for the quantitative assessment of process level networks. Finally it proposes the modeling and simulation platform for quantitative assessment of process level networks in substation basing on an 110kV substation. This paper provides an effective tool for the quantitative assessment of process level networks and substation automation system.
To solve the problem of invalid resource recommendation data and poor recommendation effect in basketball teaching network course resource recommendation, a basketball teaching network course resource recommendation method based on a deep learning algorithm is proposed. The objective function is applied to eliminate the noise in the basketball teaching network course resource data. The prominent characteristics of basketball teaching network curriculum resources are extracted using a kernel function and combined into a feature set. A convolution neural network (CNN) was employed to realize the basketball teaching network curriculum resources recommendation model. The model was assessed in terms of computation time and recognition error. To validate the performance, the proposed model was compared with two well-known recommendation models such as the learning resource recommendation method based on transfer learning and the personalized learning resource recommendation method based on three-dimensional feature collaborative domination. Experimental results show that the proposed model achieved the lowest computation time of 15 s and recommendation error less than 0.4% as compared with the existing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.