A novel sequential layer-by-layer sub-100 °C vacuum-sublimation method to fabricate planar-type organometal halide perovskite solar cells is developed. Very uniform and highly crystalline perovskite thin films with 100% surface coverage are produced. The cells attain maximum and average efficiencies up to 15.4% and 14%, respectively. This low- temperature, all-vacuum process is suitable for a wide variety of rigid and flexible applications.
Vacuum-sublimed inorganic cesium lead halide perovskite thin films are prepared and integrated in all-vacuum-deposited solar cells. Special care is taken to determine the stoichiometric balance of the sublimation precursors, which has great influence on the device performance. The mixed halide devices exhibit exceptional stabilized power conversion efficiency (11.8%) and promising thermal and long-term stabilities.
The use of photovoltaic cells with an organometallic perovskite as the active layer for indoor dim‐light energy harvesting is evaluated. By designing the electron‐transporting materials and fabrication processes, the traps in the perovskite active layers and carrier dynamics can be controlled, and efficient devices are demonstrated. The best‐performing small‐area perovskite photovoltaics exhibit a promising high power conversion efficiency up to ≈27.4%, no hysteresis behavior, and an exceptionally low maximum power point voltage variation of ≈0.1 V under fluorescent lamp illumination at 100–1000 lux. The 5.44 cm2 large‐area device also shows a high efficiency of 20.4% and a promising long‐term stability. Compared with the most efficient inorganic and organic solar cells nowadays, the competitive efficiency, low fabrication cost, and low raw material costs make perovskite photovoltaics ideal for indoor light harvesting and as Internet of Things power provider.
All-vacuum-deposited perovskite solar cells produced by controlling reagent partial pressure in high vacuum with newly developed multi-layer electron and hole transporting structures show outstanding power conversion efficiency of 17.6% and smooth, pinhole-free, micrometer-sized perovskite crystal grains.
We demonstrate the fabrication of solution-processed MoOx-treated (s-MoOx) silver nanowire (AgNW) transparent conductive electrodes (TCEs) utilizing low-temperature (sub-100 °C) processes. The s-MoOx aggregates around the AgNW and forms gauze-like MoOx thin films between the mesh, which can effectively lower the sheet resistance by more than two orders of magnitude. Notably, these s-MoOx-treated AgNW TCEs exhibit a combination of several promising characteristics, such as a high and broad transmittance across a wavelength range of 400 to 1000 nm, transmission of up to 96.8%, a low sheet resistance of 29.8 ohm sq(-1), a low haze value of 0.90%, better mechanical properties against bending and adhesion tests, and preferable gap states for efficient hole injection in optoelectronic applications. By utilizing these s-MoOx-treated AgNW TCEs as the anode in ITO-free organic light emitting diodes, promising performance of 29.2 lm W(-1) and 10.3% external quantum efficiency are demonstrated. The versatile, multi-functional s-MoOx treatment presented here paves the way for the use of low-temperature, solution-processed MoOx as both a nanowire linker and a hole injection interfacial layer for future flexible optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.