The aim of this study is to automatically detect the boundary of vessel walls in optical coherence tomography (OCT) sequences. We developed a new method to eliminate guide-wire shadow artifacts and accurately estimate the vessel wall. The estimation of the position of the guide-wire is the key concept for the elimination of guide-wire shadow artifacts. After identification of the artifacts we propose a geometrically-based method which can be applied to OCT cross-section images to remove the artifacts. The segmentation approach is based on a novel combination of expectation maximization (EM) based segmentation and graph cut (GC) based segmentation. Validation is performed using simulated data and 4 typical in vivo OCT sequences. The comparison against manual expert segmentation demonstrates that the proposed vessel wall identification is robust and accurate.
In this paper, we present a novel technique based on nonrigid image registration for myocardial motion estimation using both untagged and 3-D tagged MR images. The novel aspect of our technique is its simultaneous usage of complementary information from both untagged and 3-D tagged MR images. To estimate the motion within the myocardium, we register a sequence of tagged and untagged MR images during the cardiac cycle to a set of reference tagged and untagged MR images at end-diastole. The similarity measure is spatially weighted to maximize the utility of information from both images. In addition, the proposed approach integrates a valve plane tracker and adaptive incompressibility into the framework. We have evaluated the proposed approach on 12 subjects. Our results show a clear improvement in terms of accuracy compared to approaches that use either 3-D tagged or untagged MR image information alone. The relative error compared to manually tracked landmarks is less than 15% throughout the cardiac cycle. Finally, we demonstrate the automatic analysis of cardiac function from the myocardial deformation fields.
Abstract. Non-rigid image registration using free-form deformations (FFD) is a widely used technique in medical image registration. The balance between robustness and accuracy is controlled by the control point grid spacing and the amount of regularization. In this paper, we revisit the classic FFD registration approach and propose a sparse representation for FFDs using the principles of compressed sensing. The sparse free-form deformation model (SFFD) can capture fine local details such as motion discontinuities without sacrificing robustness. We demonstrate the capabilities of the proposed framework to accurately estimate smooth as well as discontinuous deformations in 2D and 3D image sequences. Compared to the classic FFD approach, a significant increase in registration accuracy can be observed in natural images (61%) as well as in cardiac MR images (53%) with discontinuous motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.