Summary: We present the web-based program CREx for heuristically determining pairwise rearrangement events in unichromosomal genomes. CREx considers transpositions, reverse transpositions, reversals and tandem-duplication-random-loss (TDRL) events. It supports the user in finding parsimonious rearrangement scenarios given a phylogenetic hypothesis. CREx is based on common intervals, which reflect genes that appear consecutively in several of the input gene orders. Availability: CREx is freely available at http://pacosy.informatik.
Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed.
Abstract-When asked if ants rest or if they work untiringly all day long, most people would probably respond that they had no idea. In fact, when watching the bustling life of an ant hill it is hard to imagine that ants take a rest from now and then. However, biologists discovered that ants rest quite a large fraction of their time. Surprisingly, not only single ants show alternate phases of resting and being active, but whole ant colonies exhibit synchronized activity phases that result from self-organization. Inspired by this self-synchronization behaviour of ant colonies, we develop a mechanism for self-synchronized duty-cycling in mobile sensor networks. In addition, we equip sensor nodes with energy harvesting capabilities such as, for example, solar cells. We show that the self-synchronization mechanism can be made adaptive depending on the available energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.