Summary: We present the web-based program CREx for heuristically determining pairwise rearrangement events in unichromosomal genomes. CREx considers transpositions, reverse transpositions, reversals and tandem-duplication-random-loss (TDRL) events. It supports the user in finding parsimonious rearrangement scenarios given a phylogenetic hypothesis. CREx is based on common intervals, which reflect genes that appear consecutively in several of the input gene orders. Availability: CREx is freely available at http://pacosy.informatik.
About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.