Introduction: Programmed death receptor-1 (PD-1) inhibitors have shown efficacy in first-line treatment of NSCLC; however, evidence of PD-1 inhibitor as neoadjuvant treatment is limited. This is a phase 1b study to evaluate the safety and outcome of PD-1 inhibitor in neoadjuvant setting. Methods: Treatment-naive patients with resectable NSCLC (stage IA-IIIB) received two cycles of sintilimab (200 mg, intravenously, day 1 out of 22). Operation was performed between day 29 and 43. Positron emission tomographycomputed tomography scans were obtained at baseline and before the operation. The primary end point was safety. Efficacy end points included rate of major pathologic response (MPR) and objective response rate. Expression of programmed cell death ligand 1 was also evaluated (registration number: ChiCTR-OIC-17013726). Results: A total of 40 patients enrolled, all of whom received two doses of sintilimab and 37 underwent radical resection. A total of 21 patients (52.5%) experienced neoadjuvant treatment-related adverse events (TRAEs). Four patients (10.0%) experienced grade 3 or higher neoadjuvant TRAEs, and one patient had grade 5 TRAE. Eight patients achieved radiological partial response, resulting in an objective response rate of 20.0%. Among 37 patients, 15 (40.5%) achieved MPR, including six (16.2%) with a pathologic complete response in primary tumor and three (8.1%) in lymph nodes as well. Squamous cell NSCLC exhibited superior response compared with adenocarcinoma (MPR: 48.4% versus 0%). Decrease of maximum standardized uptake values after sintilimab treatment correlated with pathologic remission (p < 0.00001). Baseline programmed cell death ligand 1 expression of stromal cells instead of tumor cells was correlated with pathologic regression (p ¼ 0.0471).
Leptin (encoded by Lep) controls body weight by regulating food intake and fuel partitioning. Obesity is characterized by leptin resistance and increased endocannabinoid tone. Here we show that leptin infused into the mediobasal hypothalamus (MBH) of rats inhibits white adipose tissue (WAT) lipogenesis, which occurs independently of signal transducer and activator of transcription-3 (STAT3) signaling. Correspondingly, transgenic inactivation of STAT3 signaling by mutation of the leptin receptor (s/s mice) leads to reduced adipose mass compared to db/db mice (complete abrogation of leptin receptor signaling). Conversely, the ability of hypothalamic leptin to suppress WAT lipogenesis in rats is lost when hypothalamic phosphoinositide 3-kinase signaling is prevented or when sympathetic denervation of adipose tissue is performed. MBH leptin suppresses the endocannabinoid anandamide in WAT, and, when this suppression of endocannabinoid tone is prevented by systemic CB1 receptor activation, MBH leptin fails to suppress WAT lipogenesis. These data suggest that the increased endocannabinoid tone observed in obesity is linked to a failure of central leptin signaling to restrain peripheral endocannabinoids.
SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality.
Homeobox genes specify cell fate and positional identity in embryos throughout the animal kingdom. Paradoxically, although each has a specific function in vivo, the in vitro DNA-binding specificities of homeodomain proteins are overlapping and relatively weak. A current model is that homeodomain proteins interact with cofactors that increase specificity in vivo. Here we use a native binding site for the homeodomain protein Fushi tarazu (Ftz) to isolate Ftz-F1, a protein of the nuclear hormone-receptor superfamily and a new Ftz cofactor. Ftz and Ftz-F1 are present in a complex in Drosophila embryos. Ftz-F1 facilitates the binding of Ftz to DNA, allowing interactions with weak-affinity sites at concentrations of Ftz that alone bind only high-affinity sites. Embryos lacking Ftz-F1 display ftz-like pair-rule cuticular defects. This phenotype is a result of abnormal ftz function because it is expressed but fails to activate downstream target genes. Cooperative interaction between homeodomain proteins and cofactors of different classes may serve as a general mechanism to increase HOX protein specificity and to broaden the range of target sites they regulate.
Early stage lung cancer detection is the first step toward successful clinical therapy and increased patient survival. Clinicians monitor cancer progression by profiling tumor cell proteins in the blood plasma of afflicted patients. Blood plasma, however, is a difficult cancer protein assessment medium because it is rich in albumins and heterogeneous protein species. We report herein a method to detect the proteins released into the circulatory system by tumor cells. Initially we analyzed the protein components in the conditioned medium (CM) of lung cancer primary cell or organ cultures and in the adjacent normal bronchus using one-dimensional PAGE and nano-ESI-MS/MS. We identified 299 proteins involved in key cellular process such as cell growth, organogenesis, and signal transduction. We selected 13 interesting proteins from this list and analyzed them in 628 blood plasma samples using ELISA. We detected 11 of these 13 proteins in the plasma of lung cancer patients and non-patient controls. Our results showed that plasma matrix metalloproteinase 1 levels were elevated significantly in late stage lung cancer patients and that the plasma levels of 14-3-3 , , and in the lung cancer patients were significantly lower than those in the control subjects. To our knowledge, this is the first time that fascin, ezrin, CD98, annexin A4, 14-3-3 , 14-3-3 , and 14-3-3 proteins have been detected in human plasma by ELISA. The preliminary results showed that a combination of CD98, fascin, polymeric immunoglobulin receptor/secretory component and 14-3-3 had a higher sensitivity and specificity than any single marker. In conclusion, we report a method to detect proteins released into blood by lung cancer. This pilot approach may lead to the identification of novel protein markers in blood and provide a new method of identifying tumor biomarker profiles for guiding both early detection and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.