We present DREAM, the first dialoguebased multiple-choice reading comprehension dataset. Collected from English-asa-foreign-language examinations designed by human experts to evaluate the comprehension level of Chinese learners of English, our dataset contains 10,197 multiplechoice questions for 6,444 dialogues. In contrast to existing reading comprehension datasets, DREAM is the first to focus on in-depth multi-turn multi-party dialogue understanding. DREAM is likely to present significant challenges for existing reading comprehension systems: 84% of answers are non-extractive, 85% of questions require reasoning beyond a single sentence, and 34% of questions also involve commonsense knowledge.We apply several popular neural reading comprehension models that primarily exploit surface information within the text and find them to, at best, just barely outperform a rule-based approach. We next investigate the effects of incorporating dialogue structure and different kinds of general world knowledge into both rule-based and (neural and non-neural) machine learning-based reading comprehension models. Experimental results on the DREAM dataset show the effectiveness of dialogue structure and general world knowledge. DREAM will be available at https://dataset.org/ dream/.
We propose a method based on neural networks to identify the sentiment polarity of opinion words expressed on a specific aspect of a sentence. Although a large majority of works typically focus on leveraging the expressive power of neural networks in handling this task, we explore the possibility of integrating dependency trees with neural networks for representation learning. To this end, we present a convolution over a dependency tree (CDT) model which exploits a Bi-directional Long Short Term Memory (Bi-LSTM) to learn representations for features of a sentence, and further enhance the embeddings with a graph convolutional network (GCN) which operates directly on the dependency tree of the sentence. Our approach propagates both contextual and dependency information from opinion words to aspect words, offering discriminative properties for supervision. Experimental results ranks our approach as the new stateof-the-art in aspect-based sentiment classification.
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
We present the first human-annotated dialoguebased relation extraction (RE) dataset Dialo-gRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross-sentence RE as most facts span multiple sentences. We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks. Considering the timeliness of communication in a dialogue, we design a new metric to evaluate the performance of RE methods in a conversational setting and investigate the performance of several representative RE methods on DialogRE. Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings. DialogRE is available at https:// dataset.org/dialogre/.
This work was done when K. S. was an intern at the Tencent AI Lab, Bellevue, WA. our fine-tuned models that incorporate these strategies. Core code is available at https: //github.com/nlpdata/strategy/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.