BACKGROUND AND AIMS Programmed death 1 (PD‐1) checkpoint inhibition has shown promising results in patients with hepatocellular carcinoma, inducing objective responses in approximately 20% of treated patients. The roles of other coinhibitory molecules and their individual contributions to T‐cell dysfunction in liver cancer, however, remain largely elusive. APPROACH AND RESULTS We performed a comprehensive mRNA profiling of cluster of differentiation 8 (CD8) T cells in a murine model of autochthonous liver cancer by comparing the transcriptome of naive, functional effector, and exhausted, tumor‐specific CD8 T cells. Subsequently, we functionally validated the role of identified genes in T‐cell exhaustion. Our results reveal a unique transcriptome signature of exhausted T cells and demonstrate that up‐regulation of the inhibitory immune receptor T‐cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine‐based inhibitor motif domains (TIGIT) represents a hallmark in the process of T‐cell exhaustion in liver cancer. Compared to PD‐1, expression of TIGIT more reliably identified exhausted CD8 T cells at different stages of their differentiation. In combination with PD‐1 inhibition, targeting of TIGIT with antagonistic antibodies resulted in synergistic inhibition of liver cancer growth in immunocompetent mice. Finally, we demonstrate expression of TIGIT on tumor‐infiltrating CD8 T cells in tissue samples of patients with hepatocellular carcinoma and intrahepatic cholangiocarcinoma and identify two subsets of patients based on differential expression of TIGIT on tumor‐specific T cells. CONCLUSIONS Our transcriptome analysis provides a valuable resource for the identification of key pathways involved in T‐cell exhaustion in patients with liver cancer and identifies TIGIT as a potential target in checkpoint combination therapies.
Chronic exposure to commercial glucose-based peritoneal dialysis fluids during peritoneal dialysis induces peritoneal membrane damage leading to ultrafiltration failure. In this study the role of protein kinase C (PKC) α in peritoneal membrane damage was investigated in a mouse model of peritoneal dialysis. We used 2 different approaches: blockade of biological activity of PKCα by intraperitoneal application of the conventional PKC inhibitor Go6976 in C57BL/6 wild-type mice and PKCα-deficient mice on a 129/Sv genetic background. Daily administration of peritoneal dialysis fluid for 5 weeks induced peritoneal upregulation and activation of PKCα accompanied by epithelial-to-mesenchymal transition of peritoneal mesothelial cells, peritoneal membrane fibrosis, neoangiogenesis, and macrophage and T cell infiltration, paralleled by reduced ultrafiltration capacity. All pathological changes were prevented by PKCα blockade or deficiency. Moreover, treatment with Go6976 and PKCα deficiency resulted in strong reduction of proinflammatory, profibrotic, and proangiogenic mediators. In cell culture experiments, both treatment with Go6976 and PKCα deficiency prevented peritoneal dialysis fluid-induced release of MCP-1 from mouse peritoneal mesothelial cells and ameliorated transforming growth factor-β1-induced epithelial-to-mesenchymal transition and peritoneal dialysis fluid-induced MCP-1 release in human peritoneal mesothelial cells. Thus, PKCα plays a crucial role in the pathophysiology of peritoneal membrane dysfunction induced by peritoneal dialysis fluids, and we suggest that its therapeutic inhibition might be a valuable treatment option for peritoneal dialysis patients.
Intrahepatic cholangiocarcinoma is the second most common primary liver tumor. The aim of this study was to analyze retrospectively the outcome of surgical treatment and prognostic factors. Clinical, histopathological and treatment data of 221 patients treated from 1995 to 2010 at our institution were investigated. Univariate and multivariate analysis of the patient's data was performed. Patients after R0 and R1 resection presented an overall survival of 67% and 54.5% after 1 year and 40% and 36.4% after 3 years, respectively. The survival of patients without resection of the tumor was dismal with 26% and 3.4% after 1 and 3 years, respectively. Survival after resection was not statistically different in cases with R0 versus R1 resection (P = 0.639, log rank). Univariate Cox regression revealed that higher T stages are a significant hazard for survival (P = 0.048, hazard ratio (HR): 1.211, 95% confidence interval (CI): 1.002-2.465). Patients with tumor recurrence had a significantly inferior long-term survival when compared to patients without recurrence (P < 0.001, log rank). Presence of lymph node metastasis (N1) was an independent prognostic factor for survival after resection in risk-adjusted multivariate Cox regression (P < 0.001, HR: 2.577, 95% CI: 1.742-3.813). Adjuvant chemotherapy did not improve patient survival significantly (P = 0.550, log rank). Surgical resection is still the best treatment option for intrahepatic cholangiocarcinoma regarding the patient's long-term survival. R0 and R1 resection enable both better survival rates when compared to surgical exploration without resection. T status, N status, and tumor recurrence seem to be the most important prognostic factors after resection.
Summary Monoclonal anti‐CD25‐antibodies are successfully applied in organ transplantation to reduce the incidence of acute graft rejection. However, targeting the CD25 molecule might not only affect activated T‐cells but also regulatory T‐cells (Tregs) constitutively expressing the CD4+CD25+CD127lowFoxP3+ phenotype. In this study, we investigated the influence of the anti‐CD25‐antibody Basiliximab on the frequency of Tregs early after kidney transplantation comparing individuals receiving/not receiving induction therapy (n = 14 and n = 7). Following Basiliximab administration, a distinct loss of CD4+CD25high T‐cells was observed lasting for at least 6 weeks. This was not accompanied by a disappearance of the entire CD4+CD25+FoxP3+ Tregs but rather a decreased expression density of CD25 on the latter. In addition, a transient rise in CD4+CD25−FoxP3+ T‐cells was found which expressed the CD127low phenotype. Thus, a phenotypic shift of Tregs from the CD25+ to the CD25− compartment was suggested. This was supported by in vitro findings showing that the disappearance of CD4+CD25high cells in the presence of Basiliximab was due to down‐regulation of CD25 expression meanwhile the suppressive function of these cells was maintained. In conclusion, Basiliximab therapy directly affects CD4+CD25+CD127lowFoxP3+ Tregs but does not seem to be associated with functional consequences. Thus, it is unlikely that Basiliximab treatment negatively influences strategies involving Tregs to promote tolerance after organ transplantation.
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune‐mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte‐induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+CD25highCD127low Tregs were added to cocultures in single‐/trans‐well setups with/without supplementation of anti‐interferon γ (IFNγ) antibodies. Hepatocyte‐induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ‐induced major histocompatibility complex (MHC) class II up‐regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up‐regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte‐induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up‐regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407–419 2018 AASLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.