The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost.
This paper presents a survey on existing stereo vision algorithms. The existing stereo vision algorithms are discussed in terms of concept, performance and related improvements. Also, a brief analysis of performance comparison among existing stereo vision algorithms is presented. Moreover, available improvements and solutions for stereo vision challenges such as computational complexity, occlusion, radiometric distortion, depth discontinuity and textureless region are reviewed.
This paper presents an enhanced particle swarm optimization (PSO) for the path planning of unmanned aerial vehicles (UAVs). An evolutionary algorithm such as PSO is costly because every application requires different parameter settings to maximize the performance of the analyzed parameters. People generally use the trial-and-error method or refer to the recommended setting from general problems. The former is time consuming, while the latter is usually not the optimum setting for various specific applications. Hence, this study focuses on analyzing the impact of input parameters on the PSO performance in UAV path planning using various complex terrain maps with adequate repetitions to solve the tuning issue. Results show that inertial weight parameter is insignificant, and a 1.4 acceleration coefficient is optimum for UAV path planning. In addition, the population size between 40 and 60 seems to be the optimum setting based on the case studies.
Despite years of work, a robust, widely applicable generic “symmetry detector” that can paral-lel other kinds of computer vision/image processing tools for the more basic structural charac-teristics, such as a “edge” or “corner” detector, remains a computational challenge. A new symmetry feature detector with a descriptor is proposed in this paper, namely the Simple Robust Features (SRF) algorithm. A performance comparison is made among SRF with SRF, Speeded-up Robust Features (SURF) with SURF, Maximally Stable Extremal Regions (MSER) with SURF, Harris with Fast Retina Keypoint (FREAK), Minimum Eigenvalue with FREAK, Features from Accelerated Segment Test (FAST) with FREAK, and Binary Robust Invariant Scalable Keypoints (BRISK) with FREAK. A visual tracking dataset is used in this performance evaluation in terms of accuracy and computational cost. The results have shown that combining the SRF detector with the SRF descriptor is preferable, as it has on average the highest accuracy. Additionally, the computational cost of SRF with SRF is much lower than the others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.