Big data makes cloud computing more and more popular in various fields. Video resources are very useful and important to education, security monitoring, and so on. However, issues of their huge volumes, complex data types, inefficient processing performance, weak security, and long times for loading pose challenges in video resource management. The Hadoop Distributed File System (HDFS) is an open-source framework, which can provide cloud-based platforms and presents an opportunity for solving these problems. This paper presents video resource management architecture based on HDFS to provide a uniform framework and a five-layer model for standardizing the current various algorithms and applications. The architecture, basic model, and key algorithms are designed for turning video resources into a cloud computing environment. The design was tested by establishing a simulation system prototype.
Ingram Micro, the world’s largest distributor of technology products, operates in a high-volume low-margin environment. The company started its Business Intelligence and Analytics practice in North America in 2009. This group has since built and deployed a scalable, innovative price-optimization engine, a set of analytics applications to identify sales opportunities for Ingram Micro’s sales force and an integrated digital marketing platform to run data-driven marketing campaigns for its customers and end-user businesses. Since 2011, these products and analytics programs have generated $1.3 billion of incremental product revenue and $42 million of incremental gross profit. Our next steps are to continue to implement these best practices in regions outside of North America and continue our activities that enable our sales force to generate revenue.
We endeavor on a rarely explored task named Insubstantial Object Detection (IOD), which aims to localize the object with following characteristics: (1) amorphous shape with indistinct boundary; (2) similarity to surroundings; (3) absence in color. Accordingly, it is far more challenging to distinguish insubstantial objects in a single static frame and the collaborative representation of spatial and temporal information is crucial. Thus, we construct an IOD-Video dataset comprised of 600 videos (141,017 frames) covering various distances, sizes, visibility, and scenes captured by different spectral ranges. In addition, we develop a spatiotemporal aggregation framework for IOD, in which different backbones are deployed and a spatio-temporal aggregation loss (STAloss) is elaborately designed to leverage the consistency along the time axis. Experiments conducted on IOD-Video dataset demonstrate that spatio-temporal aggregation can significantly improve the performance of IOD. We hope our work will attract further researches into this valuable yet challenging task. The code will be available at: https://github.com/CalayZhou/IOD-Video.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.