Background/Aim: Surgery and chemotherapy treatments of human laryngeal squamous cell carcinoma (HLSCC) may fail due to metastasis, in which epithelial-mesenchymal transition (EMT) plays an important role. TRPP2, a nonselective cation channel, is expressed in various cell types and participates in many biological processes. Here, we show that TRPP2 enhanced metastasis by regulating EMT. Methods: We used immunohistochemistry, western blotting, Ca2+ imaging, transwell and wound healing assays to investigate TRPP2 expression levels in HLSCC tissue, and the role of TRPP2 in invasion and metastasis of a human laryngocarcinoma cell line (Hep2 cell). Results: We found that TRPP2 protein expression levels were significantly increased in HLSCC tissue; higher TRPP2 levels were associated with decreased patient survival time and degree of differentiation and advanced clinical stage. Knockdown of TRPP2 by transfection with TRPP2 siRNA markedly suppressed ATP-induced Ca2+ release, wound healing, and cell invasion in Hep2 cells. Moreover, TRPP2 siRNA significantly decreased vimentin expression but increased E-cadherin expression in Hep2 cells. In the EMT signalling pathway, TRPP2 siRNA significantly decreased Smad4, STAT3, SNAIL, SLUG and TWIST expression in Hep2 cells. Conclusion: We revealed a previously unknown function of TRPP2 in cancer development and a TRPP2-dependent mechanism underlying laryngocarcinoma cell invasion and metastasis. Our results suggest that TRPP2 may be used as a biomarker for evaluating patient prognosis and as a novel therapeutic target in HLSCC.
BackgroundHuman head and neck squamous carcinoma is the 6th most prevalent carcinoma worldwide. Although many novel therapies have been developed, the clinical treatment for patients remains non-ideal. Chloride intracellular channel 4 (CLIC4), one of the seven members of the CLIC family, is a newly found Cl− channel that participates in various biological processes, including cellular apoptosis and differentiation. Accumulating evidence has revealed the significant role of CLIC4 in regulating the apoptosis of different cancer cells. Here, we investigated the functional role of CLIC4 in the apoptosis of HN4 cells, a human head and neck squamous carcinoma cell line.ResultsIn the present study, we used immunohistochemical staining to demonstrate that the expression level of CLIC4 is elevated in the tissue of human oral squamous carcinoma compared with healthy human gingival tissue. Specific CLIC4 small interfering RNA was used to knockdown the expression of CLIC4. The results showed that knockdown of CLIC4 with or without 100 μM adenosine triphosphate (ATP) treatment significantly increased the expression of Bax, active caspase 3, active caspase 4 and CHOP but suppressed Bcl-2 expression in HN4 cells. Moreover, the results from the TdT-mediated dUTP nick end labeling assay indicated that CLIC4 knockdown induced a higher apoptotic rate in HN4 cells under the induction of ATP. In addition, knockdown of CLIC4 dramatically enhanced ATP-induced mitochondrial membrane depolarization in HN4 cells. Moreover, intracellular Ca2+ measurement revealed that Ca2+ release induced by ATP and thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, was significantly enhanced by the suppression of CLIC4 in HN4 cells.ConclusionsKnockdown of CLIC4 enhanced ATP-induced apoptosis in HN4 cells. Both the pathways of mitochondria and endoplasmic reticulum stress were involved in CLIC4-mediated cell apoptosis. Based on our finding, CLIC4 may be a potential and valuable target for the clinical treatment of head and neck squamous carcinoma.Electronic supplementary materialThe online version of this article (doi:10.1186/s13578-016-0070-1) contains supplementary material, which is available to authorized users.
Though many patients with thyroid cancer may be indolent, there are still about 50% lymph node metastases and 20% the recurrence rates. There is still no ideal method to predict its relapse. In this study, we analyzed the gene transcriptome profiles of eight Gene Expression Omnibus (GEO), and next screened 77 commonly differential expressed genes. Next, Least Absolute Shrinkage and Selection Operator (LASSO) regression model was performed and seven genes (i.e., FN1, PKIA, TMEM47, FXYD6, SDC2, CD44, and GGCT) were then identified, which is highly associated with recurrence data from the Cancer Genome Atlas (TCGA) database. These patients were then divided into low and high-risk groups with specific risk-score formula. Univariate and multivariate Cox regression further revealed that the 7-mRNA signature plays a functional causative role independent of clinicopathological characteristics. The 7-mRNA-signature integrated nomogram showed better discrimination, and decision curve analysis demonstrated that it is clinically useful. Besides, patient with lower risk score shows a relatively lower level of activated dendritic cells (DCs), resting DCs, regulatory T cells and γδT cells, and process of DCs apoptotic. In conclusion, our present immune-related classifier could produce a potential tool for predicting early-relapse.
Background Acetyl-CoA carboxylase (ACC) plays an important role in the metabolism of various cancer cells, but its role in head and neck squamous cell carcinoma (HNSCC) is uncertain. Therefore, in the present study, we explored the role of ACC2 in HNSCC. Methods Western blot and immunohistochemistry assays were used to determine ACC2 protein expression levels in laryngocarcinoma and adjacent normal tissues derived from patients with laryngocarcinoma. ACC2 expression was knocked down in the hypopharyngeal cancer cell line FaDu to determine its effect on apoptosis. Lipid oil red staining was used to test the change of intracellular lipid. Results The results showed that the ACC2 protein was highly expressed in laryngocarcinoma and that the ACC2 expression level was positively associated with the clinical cancer stage and negatively associated with the degree of laryngocarcinoma cell differentiation. Kaplan–Meier analyses indicated that compared with patients having low levels of ACC2, those with high ACC2 levels had a decreased 5-year survival rate. The results of western blot and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays showed that knockdown of ACC2 accelerated apoptosis in FaDu cells. Furthermore, knockdown of ACC2 significantly reduced the intracellular lipid levels in FaDu cells. Conclusion These findings suggest that ACC2 may be an important prognostic marker for patients with HNSCC and that ACC2 may be a potential target in the treatment of HNSCC.
Antimicrobial resistance in Gram-negative bacteria has become one of the leading causes of morbidity and mortality and a serious worldwide public health concern due to the fact that Gram-negative bacteria have an additional outer membrane protecting them from an unwanted compound invading. It is still very difficult for antimicrobials to reach intracellular targets and very challenging to treat Gram-negative bacteria with the current strategies. Here, we found that (o-(bromomethyl)phenyl)boronic acid was incorporated into poly((2-N,N-diethyl)aminoethyl acrylate) (PDEA), forming a copolymer (poly(o-B n -DEA)) having both phenylboronic acid (B) and ((2-N,N-diethyl)amino) (DEA) units. Poly(o-B n -DEA) exhibits very strong intramolecular B–N coordination, which could highly promote the covalent binding of phenylboronic acid with lipopolysaccharide (LPS) on the outer membrane of E. coli and lodge poly(o-B n -DEA) on the LPS layer on the surface of E. coli. Meanwhile, the strong electrostatic interaction between poly(o-B n -DEA) and the negatively charged lipid preferred tugging the poly(o-B n -DEA) into the lipid bilayer of E. coli. The combating interactions between covalent binding and electrostatic interaction form a tug-of-war action, which could trigger the lysis of the outer membrane, thereby killing Gram-negative E. coli effectively without detectable resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.