The climatic and ecological environment is a complex phenomenon, involving various environmental factors that regulate the diversity and population distribution structure of AMF communities affecting plant growth, crop composition, and yield. Current studies on the effects of environmental factors on AMF communities have mainly focused on soil conditions and host plants.
Lycium barbarum L. is a well-known traditional geoherb in Ningxia, China. The fruits of L. barbarum contain several dietary constituents, and thus, they exert many beneficial effects on human health. However, a few studies have been conducted on the geoherb L. barbarum and its rhizosphere soil fungal community. In this study, we determined the physicochemical properties and fungal community structure of rhizosphere soil of L. barbarum from three regions of China, namely Ningxia (NX), Qinghai (QH), and Xinjiang (XJ), during three development stages of L. barbarum. Soil pH varied between 7.56 and 8.60 across the three regions, indicating that alkaline soil is conducive to the growth of L. barbarum. The majority of soil properties in NX, an authentic geoherb-producing area, were substantially inferior to those in XJ and QH during all three developmental stages. Total sugar, polysaccharide (LBP), and flavonoid contents were the highest in wolfberry fruits from NX. High-throughput sequencing showed that the abundance of the soil fungal population in NX was higher than that in QH and XJ during the flowering and fruiting stage and summer dormant stage. Moreover, the soil fungal diversity increased with the development of wolfberry. Ascomycota and Mortierellomycota were the predominant phyla in the rhizosphere fungal communities in all samples. Redundancy analysis showed a significant correlation of the soil-available phosphorus and LBP of wolfberry fruits with the fungal community composition. The characteristics of rhizosphere fungal communities determined in the present study provide insights into the mechanism of geoherb formation in NX wolfberry.
The complete coding sequence of Wild Argali ISG15 cDNA was generated by rapid amplification of cDNA ends. The ISG15 cDNA was 642 bp with an open reading frame of 474 bp, which encoded a 17.47 kDa protein composed of 157 amino acids. Its amino acid sequence shared 97.9%, 80.8%, 91.4%, 94.3%, 78.3% identity with those of ISG15cDNA from Ovis aries (accession no. NM001009735.1), Capra hircus (accession no. HQ329186.1), Bos taurus (accession no. BC102318.1), Bubalus bubalis (accession no. HM543269.1), and Sus scrofa (accession no. EU647216.1), respectively. The entire coding sequence was inserted into the pET-28a vector and expressed in E. coli. The recombinant protein corresponded to the expected molecular mass of 25 kDa as judged by SDS-PAGE, and it was detected in the bacterial inclusion bodies. The expressed protein could be purified by Ni2+ chelate affinity chromatography and the results from the lymphocyte proliferation test showed that the product could stimulate lymphocyte proliferation very well (p<0.05), which further confirmed its biological activity.
ObjectiveExperiments were conducted to clone the sequence of Wild Argali short palate, lung and nasal epithelium clone 1 (SPLUNC1) cDNA, and to lay the foundation for further study the biological function of Wild Argali SPLUNC1.MethodsThe complete sequence of Wild Argali SPLUNC1 cDNA was generated by rapid amplification of cDNA ends. The entire coding sequence was inserted into the pPIC9K vector and expressed in Pichia pastoris (P. pastoris) GS115. The recombinant SPLUNC1 protein was detected by Western blot and purified by Ni2+ chelate affinity chromatography. The test of effect of the protein on Mycoplasma ovipneumoniae (MO) was performed with real-time polymerase chain reaction.ResultsThe Wild Argali SPLUNC1 cDNA was 1,076 bp with an open reading frame of 768 bp, which encoded a 26.49 kDa protein composed of 255 amino acids. Its amino acid sequence shared 98.4%, 96.9%, 94.5%, 90.2%, 80.8%, 78.4%, 78.3%, 72.5%, 72.3%, 68.8% identity with those of SPLUNC1 cDNA from Ovis aries (accession no. NP_001288334.1), Capra hircus (accession no. XP_005688516.1), Pantholops hodgsonii (accession no. XP_005979709.1), Bos taurus (accession no. NP_776851.1), Felis catus (accession no. XP_006929910.1), Homo sapiens (accession no. NP_001230122.1), Sus scrofa (accession no. NP_001005727.1), Chinchilla lanigera (accession no. NP_001269294.1), Mus musculus (accession no. NP_035256.2), and Rattus norvegicus (accession no. NP_742028.1), respectively. The recombinant protein corresponded to the expected molecular mass of 25.47 kDa as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it was detected in the supernatant of P. pastoris, and it could be purified. The results from the test of inhibition effect of argali recombinant SPLUNC1 protein on MO showed that the product could inhibit MO very well (p<0.01).ConclusionThe amino acid sequence of Wild Argali SPLUNC1 was different from other organisms. The recombinant SPLUNC1 protein has good biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.