Recent studies have described active nitrogen fixation in high‐latitude waters, but the ecological controls on the occurrence or activity of nitrogen‐fixing organisms (diazotrophs) in such systems remain unknown. Turnover rates and top‐down controls are also general knowledge gaps for marine diazotrophs. We detected abundant UCYN‐A (endosymbiotic nitrogen‐fixing cyanobacteria) in the Gulf of Anadyr, western Bering Sea, which correlated with high dissolved iron to dissolved inorganic nitrogen ratios (Fe : DIN) due to riverine input. Growth and grazing mortality of UCYN‐A sublineages were almost balanced with higher biomass‐turnover rates compared to the whole phytoplankton community, indicating selective grazing of UCYN‐A in nitrogen‐depleted waters. Grazing rates on UCYN‐A1 (small cells) were higher than for UCYN‐A2/3/4 (large cells), consistent with the general size dependence of phytoplankton growth and grazing mortality. We found that Fe : DIN is a major determinant of UCYN‐A abundances in high‐latitude waters, where UCYN‐A could make substantial contributions to plankton food‐web cycling.
Body size is a fundamental trait determining individual fitness and ecological processes. Reduction in body size with increasing temperature has been widely observed in most ectotherms and endotherms, known as Bergmann's rule. However, we lack data to assess if ciliates, the major consumers of marine primary production, follow Bergmann's rule and what drives the distributions of their cell size. Here, we examined a data set (287 samples) collected across the global oceans to investigate biogeographic patterns in the mean cell-size of ciliate communities. By measuring the sizes of every ciliate cell (< 10 to > 300 per sample), we found that community cell-size increased with increasing latitude, conforming to Bergmann's rule. We then addressed the cause. Temperature was a main driver of the trend. Ciliate community mean cellsize decreased 34% when temperature increased from 3.5 to 31°C, implying that temperature may be a direct physiological driver. In addition, prey (phytoplankton) size also influenced the trend, with ciliate size increasing by 35% across the gradient of phytoplankton size (0.6-15.5 μm). Generally, these findings emphasized the importance of how both biotic and abiotic factors affect size distribution of marine ciliates, a key component of pelagic ecosystems. Our novel, extensive dataset and the predictive trends arising from them contribute to understanding how climate change will influence pelagic ecosystem functions.
Phytoplankton growth and microzooplankton grazing are two critical processes in marine food webs, but they remain understudied in the vast area of the subarctic western Pacific and the Bering Sea. In this study, we measured phytoplankton growth and microzooplankton grazing rates in these less‐explored regions to demonstrate their spatial patterns and investigate underlying mechanisms driving the planktonic food web dynamics. Our results showed that the phytoplankton growth in these regions was determined by nutrient availability and temperature. In the high‐nutrient, low‐chlorophyll regions (HNLC), iron availability was the primary factor limiting phytoplankton growth. In contrast, phytoplankton growth in the Gulf of Anadyr and Kamchatka Strait was mainly limited by inorganic nitrogen exhausted by the summer blooms. We found that microzooplankton grazing rate was affected by temperature and prey availability, highlighting the positive effect of temperature. Strong top‐down control on phytoplankton by microzooplankton in the Gulf of Anadyr and Kamchatka Strait indicated an active microbial food web with high turnover rates. In contrast, the decoupling of phytoplankton growth and microzooplankton grazing in the HNLC regions illustrates a weak role of microzooplankton in the marine food web. These results indicated different food web structures in the areas with and without riverine iron input. By revealing the roles of temperature and nutrient or prey availability in regulating the spatial variability of plankton rates, we expect that the plankton will respond differently to ocean warming between the HNLC and coastal regions of the subarctic Pacific due to different nutrient conditions. Our study helps understand how marine plankton will respond to environmental changes at high latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.